

 [image: Cover image]

Ada for the Embedded C Developer

Release 2025-05

May 31, 2025

Copyright © 2020 – 2024, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: _images/ccheart_black.png]

This course introduces you to the Ada language by comparing it to C. It
assumes that you have good knowledge of the C language. It also assumes
that the choice of learning Ada is guided by considerations linked to
reliability, safety or security. In that sense, it teaches you Ada
paradigms that should be applied in replacement of those usually applied
in C.

This course also introduces you to the SPARK subset of the Ada programming
language, which removes a few features of the language with undefined
behavior, so that the code is fit for sound static analysis techniques.

This course was written by Quentin Ochem, Robert Tice, Gustavo A. Hoffmann,
and Patrick Rogers and reviewed by Patrick Rogers, Filip Gajowniczek, and
Tucker Taft.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

	Introduction
	So, what is this Ada thing anyway?

	Ada — The Technical Details

	The C Developer's Perspective
	What we mean by Embedded Software

	The GNAT Toolchain

	The GNAT Toolchain for Embedded Targets

	Hello World in Ada

	The Ada Syntax

	Compilation Unit Structure

	Packages
	Declaration Protection

	Hierarchical Packages

	Using Entities from Packages

	Statements and Declarations

	Conditions

	Loops

	Type System
	Strong Typing

	Language-Defined Types

	Application-Defined Types

	Type Ranges

	Unsigned And Modular Types

	Attributes

	Arrays and Strings

	Heterogeneous Data Structures

	Pointers

	Functions and Procedures
	General Form

	Overloading

	Aspects

	Concurrency and Real-Time
	Understanding the various options

	Tasks

	Rendezvous

	Selective Rendezvous

	Protected Objects

	Ravenscar

	Writing Ada on Embedded Systems
	Understanding the Ada Run-Time

	Low Level Programming
	Representation Clauses

	Embedded Assembly Code

	Interrupt Handling

	Dealing with Absence of FPU with Fixed Point

	Volatile and Atomic data
	Volatile

	Atomic

	Interfacing with Devices
	Size aspect and attribute

	Register overlays

	Data streams

	ARM and svd2ada

	Enhancing Verification with SPARK and Ada
	Understanding Exceptions and Dynamic Checks

	Understanding Dynamic Checks versus Formal Proof

	Initialization and Correct Data Flow

	Contract-Based Programming

	Replacing Defensive Code

	Proving Absence of Run-Time Errors

	Proving Abstract Properties

	Final Comments

	C to Ada Translation Patterns
	Naming conventions and casing considerations

	Manually interfacing C and Ada

	Building and Debugging mixed language code

	Automatic interfacing

	Using Arrays in C interfaces

	By-value vs. by-reference types

	Naming and prefixes

	Pointers

	Bitwise Operations

	Mapping Structures to Bit-Fields
	Overlays vs. Unchecked Conversions

	Handling Variability and Re-usability
	Understanding static and dynamic variability

	Handling variability & reusability statically
	Genericity

	Simple derivation

	Configuration pragma files

	Configuration packages

	Handling variability & reusability dynamically
	Records with discriminants

	Variant records
	Variant records and unions

	Optional components

	Optional output information

	Object orientation
	Type extension

	Overriding subprograms

	Comparing untagged and tagged types

	Dispatching calls

	Interfaces

	Deriving from multiple interfaces

	Abstract tagged types

	From simple derivation to OOP

	Further resources

	Pointer to subprograms

	Design by components using dynamic libraries

	Performance Considerations
	Overall expectations

	Switches and optimizations
	Optimizations levels

	Inlining

	Checks and assertions
	Checks

	Assertions

	Dynamic vs. static structures

	Pointers vs. data copies
	Function returns

	Argumentation and Business Perspectives
	What's the expected ROI of a C to Ada transition?

	Who is using Ada today?

	What is the future of the Ada technology?

	Is the Ada toolset complete?

	Where can I find Ada or SPARK developers?

	How to introduce Ada and SPARK in an existing code base?

	Conclusion

	Hands-On: Object-Oriented Programming
	System Overview

	Non Object-Oriented Approach
	Starting point in C

	Initial translation to Ada

	Improved Ada implementation

	First Object-Oriented Approach
	Interfaces

	Base type

	Derived types

	Subprograms from parent

	Type AB

	Updated source-code

	Further Improvements
	Dispatching calls

	Dynamic allocation

	Limited controlled types

	Updated source-code

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Introduction

So, what is this Ada thing anyway?

To answer this question let's introduce Ada as it compares to C for an embedded
application. C developers are used to a certain coding semantic and style of
programming. Especially in the embedded domain, developers are used to working
at a very low level near the hardware to directly manipulate memory and
registers. Normal operations involve mathematical operations on pointers,
complex bit shifts, and logical bitwise operations. C is well designed for such
operations as it is a low level language that was designed to replace assembly
language for faster, more efficient programming. Because of this minimal
abstraction, the programmer has to model the data that represents the problem
they are trying to solve using the language of the physical hardware.

Let's look at an example of this problem in action by comparing the same
program in Ada and C:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#define DEGREES_MAX (360)
 5typedef unsigned int degrees;
 6
 7#define MOD_DEGREES(x) (x % DEGREES_MAX)
 8
 9degrees add_angles(degrees* list, int length)
10{
11 degrees sum = 0;
12 for(int i = 0; i < length; ++i) {
13 sum += list[i];
14 }
15
16 return sum;
17}
18
19int main(int argc, char** argv)
20{
21 degrees list[argc - 1];
22
23 for(int i = 1; i < argc; ++i) {
24 list[i - 1] = MOD_DEGREES(atoi(argv[i]));
25 }
26
27 printf("Sum: %d\n", add_angles(list, argc - 1));
28
29 return 0;
30}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Introduction.Add_Angles_C
MD5: a6d184caaec372c538634c578b5e144b

Runtime output

Sum: 0

[Ada]

sum_angles.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Sum_Angles is
 5
 6 DEGREES_MAX : constant := 360;
 7 type Degrees is mod DEGREES_MAX;
 8
 9 type Degrees_List is array (Natural range <>) of Degrees;
10
11 function Add_Angles (List : Degrees_List) return Degrees
12 is
13 Sum : Degrees := 0;
14 begin
15 for I in List'Range loop
16 Sum := Sum + List (I);
17 end loop;
18
19 return Sum;
20 end Add_Angles;
21
22 List : Degrees_List (1 .. Argument_Count);
23begin
24 for I in List'Range loop
25 List (I) := Degrees (Integer'Value (Argument (I)));
26 end loop;
27
28 Put_Line ("Sum:" & Add_Angles (List)'Img);
29end Sum_Angles;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Introduction.Add_Angles_Ada
MD5: b5a446e5c27aa18c917ae8c2cc6c1605

Runtime output

Sum: 0

Here we have a piece of code in C and in Ada that takes some numbers from the
command line and stores them in an array. We then sum all of the values in the
array and print the result. The tricky part here is that we are working with
values that model an angle in degrees. We know that angles are modular types,
meaning that angles greater than 360° can also be represented as Angle
mod 360. So if we have an angle of 400°, this is equivalent to 40°. In order
to model this behavior in C we had to create the MOD_DEGREES macro, which
performs the modulus operation. As we read values from the command line, we
convert them to integers and perform the modulus before storing them into the
array. We then call add_angles which returns the sum of the values in the
array. Can you spot the problem with the C code?

Try running the Ada and C examples using the input sequence 340 2 50 70.
What does the C program output? What does the Ada program output? Why are they
different?

The problem with the C code is that we forgot to call MOD_DEGREES in the
for loop of add_angles. This means that it is possible for add_angles to return
values greater than DEGREES_MAX. Let's look at the equivalent Ada code now
to see how Ada handles the situation. The first thing we do in the Ada code is
to create the type Degrees which is a modular type. This means that the
compiler is going to handle performing the modulus operation for us. If we use
the same for loop in the Add_Angles function, we can see that we aren't
doing anything special to make sure that our resulting value is within the 360°
range we need it to be in.

The takeaway from this example is that Ada tries to abstract some concepts from
the developer so that the developer can focus on solving the problem at hand
using a data model that models the real world rather than using data types
prescribed by the hardware. The main benefit of this is that the compiler takes
some responsibility from the developer for generating correct code. In this
example we forgot to put in a check in the C code. The compiler inserted the
check for us in the Ada code because we told the compiler what we were trying
to accomplish by defining strong types.

Ideally, we want all the power that the C programming language can give us to
manipulate the hardware we are working on while also allowing us the ability to
more accurately model data in a safe way. So, we have a dilemma; what can give
us the power of operations like the C language, but also provide us with
features that can minimize the potential for developer error? Since this course
is about Ada, it's a good bet we're about to introduce the Ada language as the
answer to this question…

Unlike C, the Ada language was designed as a higher level language from its
conception; giving more responsibility to the compiler to generate correct
code. As mentioned above, with C, developers are constantly shifting, masking,
and accessing bits directly on memory pointers. In Ada, all of these operations
are possible, but in most cases, there is a better way to perform these
operations using higher level constructs that are less prone to mistakes, like
off-by-one or unintentional buffer overflows. If we were to compare the same
application written using C and with Ada using high level constructs, we would
see similar performance in terms of speed and memory efficiency. If we compare
the object code generated by both compilers, it's possible that they even look
identical!

Ada — The Technical Details

Like C, Ada is a compiled language. This means that the compiler will parse the
source code and emit machine code native to the target hardware. The Ada
compiler we will be discussing in this course is the GNAT compiler. This
compiler is based on the GCC technology like many C and C++ compilers
available. When the GNAT compiler is invoked on Ada code, the GNAT front-end
expands and translates the Ada code into an intermediate language which is
passed to GCC where the code is optimized and translated to machine code. A C
compiler based on GCC performs the same steps and uses the same intermediate
GCC representation. This means that the optimizations we are used to seeing
with a GCC based C compiler can also be applied to Ada code. The main
difference between the two compilers is that the Ada compiler is expanding high
level constructs into intermediate code. After expansion, the Ada code will be
very similar to the equivalent C code.

It is possible to do a line-by-line translation of C code to Ada. This feels
like a natural step for a developer used to C paradigms. However, there may be
very little benefit to doing so. For the purpose of this course, we're going to
assume that the choice of Ada over C is guided by considerations linked to
reliability, safety or security. In order to improve upon the reliability,
safety and security of our application, Ada paradigms should be applied in
replacement of those usually applied in C. Constructs such as pointers,
preprocessor macros, bitwise operations and defensive code typically get
expressed in Ada in very different ways, improving the overall reliability and
readability of the applications. Learning these new ways of coding, often,
requires effort by the developer at first, but proves more efficient once the
paradigms are understood.

In this course we will also introduce the SPARK subset of the Ada programming
language. The SPARK subset removes a few features of the language, i.e., those
that make proof difficult, such as pointer aliasing. By removing these features
we can write code that is fit for sound static analysis techniques. This means
that we can run mathematical provers on the SPARK code to prove certain safety
or security properties about the code.

Footnotes

The C Developer's Perspective on Ada

What we mean by Embedded Software

The Ada programming language is a general programming language, which means it
can be used for many different types of applications. One type of application
where it particularly shines is reliable and safety-critical embedded software;
meaning, a platform with a microprocessor such as ARM, PowerPC, x86, or RISC-V.
The application may be running on top of an embedded operating system, such as
an embedded Linux, or directly on bare metal. And the application domain can
range from small entities such as firmware or device controllers to flight
management systems, communication based train control systems, or advanced
driver assistance systems.

The GNAT Toolchain

The toolchain used throughout this course is called GNAT, which is a suite of
tools with a compiler based on the GCC environment. It can be obtained from
AdaCore, either as part of a commercial contract with
GNAT Pro[#1] or at no charge with the
GNAT Community edition[#2]. The information
in this course will be relevant no matter which edition you're using. Most
examples will be runnable on the native Linux or Windows version for
convenience. Some will only be relevant in the context of a cross toolchain, in
which case we'll be using the embedded ARM bare metal toolchain.

As for any Ada compiler, GNAT takes advantage of implementation permissions and
offers a project management system. Because we're talking about embedded
platforms, there are a lot of topics that we'll go over which will be specific
to GNAT, and sometimes to specific platforms supported by GNAT. We'll try to
make the distinction between what is GNAT-specific and Ada generic as much as
possible throughout this course.

For an introduction to the GNAT Toolchain for the GNAT Community edition, you
may refer to the
Introduction to GNAT Toolchain
course.

The GNAT Toolchain for Embedded Targets

When we're discussing embedded programming, our target device is often
different from the host, which is the device we're using to actually write and
build an application. In this case, we're talking about cross compilation
platforms (concisely referred to as cross platforms).

The GNAT toolchain supports cross platform compilation for various
target devices. This section provides a short introduction to the topic. For
more details, please refer to the
GNAT User’s Guide Supplement for Cross Platforms[#3]

GNAT supports two types of cross platforms:

	cross targets, where the target device has an embedded operating system.

	ARM-Linux, which is commonly found in a Raspberry-Pi, is a prominent
example.

	bareboard targets, where the run-times do not depend on an operating
system.

	In this case, the application has direct access to the system hardware.

For each platform, a set of run-time libraries is available. Run-time libraries
implement a subset of the Ada language for different use cases, and they're
different for each target platform. They may be selected via an attribute in
the project's GPR project file or as a command-line switch to
GPRbuild. Although the run-time libraries may vary from target to
target, the user interface stays the same, providing portability for the
application.

Run-time libraries consists of:

	Files that are dependent on the target board.

	These files are responsible for configuring and interacting with the
hardware.

	They are known as a Board Support Package — commonly referred to by
their abbrevation BSP.

	Code that is target-independent.

	This code implements language-defined functionality.

The bareboard run-time libraries are provided as customized run-times that are
configured to target a very specific micro-controller or processor. Therefore,
for different micro-controllers and processors, the run-time libraries need to
be ported to the specific target. These are some examples of what needs to be
ported:

	startup code / scripts;

	clock frequency initializations;

	memory mapping / allocation;

	interrupts and interrupt priorities;

	register descriptions.

For more details on the topic, please refer to the following chapters of the
GNAT User’s Guide Supplement for Cross Platforms[#4]:

	Bareboard Topics[#5]

	Customized Run-Time Libraries[#6]

Hello World in Ada

The first piece of code to translate from C to Ada is the usual Hello World
program:

[C]

main.c

1#include <stdio.h>
2
3int main(int argc, const char * argv[])
4{
5 printf("Hello World\n");
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Hello_World_C
MD5: 59685c72296a032893cda71dade24196

Runtime output

Hello World

[Ada]

hello_world.adb

1with Ada.Text_IO;
2
3procedure Hello_World
4is
5begin
6 Ada.Text_IO.Put_Line ("Hello World");
7end Hello_World;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Hello_World_Ada
MD5: f1a7c6a4fd679c4caea7ee31d14aab2e

Runtime output

Hello World

The resulting program will print Hello World on the screen. Let's now
dissect the Ada version to describe what is going on:

The first line of the Ada code is giving us access to the Ada.Text_IO
library which contains the Put_Line function we will use to print the
text to the console. This is similar to C's #include <stdio.h>. We then
create a procedure which executes Put_Line which prints to the console.
This is similar to C's printf function. For now, we can assume these Ada
and C features have similar functionality. In reality, they are very different.
We will explore that more as we delve further into the Ada language.

You may have noticed that the Ada syntax is more verbose than C. Instead of
using braces {} to declare scope, Ada uses keywords. is opens a
declarative scope — which is empty here as there's no variable to
declare. begin opens a sequence of statements. Within this sequence,
we're calling the function Put_Line, prefixing explicitly with the name
of the library unit where it's declared, Ada.Text_IO. The absence of the
end of line \n can also be noted, as Put_Line always terminates by
an end of line.

The Ada Syntax

Ada syntax might seem peculiar at first glance. Unlike many other languages,
it's not derived from the popular C style of notation with its ample use of
brackets; rather, it uses a more expository syntax coming from Pascal. In many
ways, Ada is a more explicit language — its syntax was designed to
increase readability and maintainability, rather than making it faster to write
in a condensed manner. For example:

	full words like begin and end are used in place of curly
braces.

	Conditions are written using if, then, elsif,
else, and end if.

	Ada's assignment operator does not double as an expression, eliminating
potential mistakes that could be caused by = being used where ==
should be.

All languages provide one or more ways to express comments. In Ada, two
consecutive hyphens -- mark the start of a comment that continues to the
end of the line. This is exactly the same as using // for comments in C.
Multi line comments like C's /* */ do not exist in Ada.

Ada compilers are stricter with type and range checking than most C programmers
are used to. Most beginning Ada programmers encounter a variety of warnings and
error messages when coding, but this helps detect problems and vulnerabilities
at compile time — early on in the development cycle. In addition, checks
(such as array bounds checks) provide verification that could not be done at
compile time but can be performed either at run-time, or through formal proof
(with the SPARK tooling).

Ada identifiers and reserved words are case insensitive. The identifiers
VAR, var and VaR are treated as the same identifier;
likewise begin, BEGIN, Begin, etc. Identifiers may include
letters, digits, and underscores, but must always start with a letter. There
are 73 reserved keywords in Ada that may not be used as identifiers, and these
are:

	abort

	else

	null

	select

	abs

	elsif

	of

	separate

	abstract

	end

	or

	some

	accept

	entry

	others

	subtype

	access

	exception

	out

	synchronized

	aliased

	exit

	overriding

	tagged

	all

	for

	package

	task

	and

	function

	pragma

	terminate

	array

	generic

	private

	then

	at

	goto

	procedure

	type

	begin

	if

	protected

	until

	body

	in

	raise

	use

	case

	interface

	range

	when

	constant

	is

	record

	while

	declare

	limited

	rem

	with

	delay

	loop

	renames

	xor

	delta

	mod

	requeue

	

	digits

	new

	return

	

	do

	not

	reverse

	

Compilation Unit Structure

Both C and Ada were designed with the idea that the code specification and code
implementation could be separated into two files. In C, the specification
typically lives in the .h, or header file, and the implementation lives in the
.c file. Ada is superficially similar to C. With the GNAT toolchain,
compilation units are stored in files with an .ads extension for specifications
and with an .adb extension for implementations.

One main difference between the C and Ada compilation structure is that Ada
compilation units are structured into something called packages.

Packages

The package is the basic modularization unit of the Ada language, as is the
class for Java and the header and implementation pair for C.
A specification defines a package and the implementation implements the package.
We saw this in an earlier example when we included the Ada.Text_IO
package into our application. The package specification has the structure:

[Ada]

-- my_package.ads
package My_Package is

 -- public declarations

private

 -- private declarations

end My_Package;

The package implementation, or body, has the structure:

-- my_package.adb
package body My_Package is

 -- implementation

end My_Package;

Declaration Protection

An Ada package contains three parts that, for GNAT, are separated into two files:
.ads files contain public and private Ada specifications, and
.adb files contain the implementation, or Ada bodies.

[Ada]

package Package_Name is
 -- public specifications
private
 -- private specifications
end Package_Name;

package body Package_Name is
 -- implementation
end Package_Name;

Private types are useful for preventing the users of a package's types from
depending on the types' implementation details. Another use-case is the prevention
of package users from accessing package state/data arbitrarily. The private
reserved word splits the package spec into public and private parts.
For example:

[Ada]

types.ads

 1package Types is
 2 type Type_1 is private;
 3 type Type_2 is private;
 4 type Type_3 is private;
 5 procedure P (X : Type_1);
 6 -- ...
 7private
 8 procedure Q (Y : Type_1);
 9 type Type_1 is new Integer range 1 .. 1000;
10 type Type_2 is array (Integer range 1 .. 1000) of Integer;
11 type Type_3 is record
12 A, B : Integer;
13 end record;
14end Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Private_Types
MD5: ae4a9e4d10b55e7efd92d7952ba22f4f

Subprograms declared above the private separator (such as P) will
be visible to the package user, and the ones below (such as Q) will not.
The body of the package, the implementation, has access to both parts.
A package specification does not require a private section.

Hierarchical Packages

Ada packages can be organized into hierarchies. A child unit can be declared in
the following way:

[Ada]

-- root-child.ads

package Root.Child is
 -- package spec goes here
end Root.Child;

-- root-child.adb

package body Root.Child is
 -- package body goes here
end Root.Child;

Here, Root.Child is a child package of Root. The public part of
Root.Child has access to the public part of Root. The private
part of Child has access to the private part of Root, which is
one of the main advantages of child packages. However, there is no visibility
relationship between the two bodies. One common way to use this capability is
to define subsystems around a hierarchical naming scheme.

Using Entities from Packages

Entities declared in the visible part of a package specification can be made
accessible using a with clause that references the package, which is
similar to the C #include directive. After a with clause makes a
package available, references to the package contents require the name of the
package as a prefix, with a dot after the package name.
This prefix can be omitted if a use clause is employed.

[Ada]

pck.ads

1-- pck.ads
2
3package Pck is
4 My_Glob : Integer;
5end Pck;

main.adb

1-- main.adb
2
3with Pck;
4
5procedure Main is
6begin
7 Pck.My_Glob := 0;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Using_Pkg_Entities
MD5: 4215ba710eb54478538dc001bb74ce09

In contrast to C, the Ada with clause is a semantic inclusion
mechanism rather than a text inclusion mechanism; for more information on
this difference please refer to
Packages.

Statements and Declarations

The following code samples are all equivalent, and illustrate the use of
comments and working with integer variables:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // variable declarations
 6 int a = 0, b = 0, c = 100, d;
 7
 8 // c shorthand for increment
 9 a++;
10
11 // regular addition
12 d = a + b + c;
13
14 // printing the result
15 printf("d = %d\n", d);
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_C
MD5: ba258dac5c052a97da475239e2f2ce96

Runtime output

d = 101

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- variable declaration
 6 A, B : Integer := 0;
 7 C : Integer := 100;
 8 D : Integer;
 9begin
10 -- Ada does not have a shortcut format for increment like in C
11 A := A + 1;
12
13 -- regular addition
14 D := A + B + C;
15
16 -- printing the result
17 Ada.Text_IO.Put_Line ("D =" & D'Img);
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Ada
MD5: eaff76f36d5f938bd806d29048df7865

Runtime output

D = 101

You'll notice that, in both languages, statements are terminated with a
semicolon. This means that you can have multi-line statements.

The shortcuts of incrementing and decrementing

You may have noticed that Ada does not have something similar to the
a++ or a-- operators. Instead you must use the full assignment
A := A + 1 or A := A - 1.

In the Ada example above, there are two distinct sections to the
procedure Main. This first section is delimited by the is keyword
and the begin keyword. This section is called the declarative block of
the subprogram. The declarative block is where you will define all the local
variables which will be used in the subprogram. C89 had something similar,
where developers were required to declare their variables at the top of the
scope block. Most C developers may have run into this before when trying to
write a for loop:

[C]

main.c

 1/* The C89 version */
 2
 3#include <stdio.h>
 4
 5int average(int* list, int length)
 6{
 7 int i;
 8 int sum = 0;
 9
10 for(i = 0; i < length; ++i) {
11 sum += list[i];
12 }
13 return (sum / length);
14}
15
16int main(int argc, const char * argv[])
17{
18 int vals[] = { 2, 2, 4, 4 };
19
20 printf("Average: %d\n", average(vals, 4));
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_C89
MD5: 5c89aa28cba0bae4d963b235c53aedf2

Runtime output

Average: 3

[C]

main.c

 1// The modern C way
 2
 3#include <stdio.h>
 4
 5int average(int* list, int length)
 6{
 7 int sum = 0;
 8
 9 for(int i = 0; i < length; ++i) {
10 sum += list[i];
11 }
12
13 return (sum / length);
14}
15
16int main(int argc, const char * argv[])
17{
18 int vals[] = { 2, 2, 4, 4 };
19
20 printf("Average: %d\n", average(vals, 4));
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_C_Modern
MD5: 6354863137d78adb974743915d1d4530

Runtime output

Average: 3

For the fun of it, let's also see the Ada way to do this:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Int_Array is array (Natural range <>) of Integer;
 5
 6 function Average (List : Int_Array) return Integer
 7 is
 8 Sum : Integer := 0;
 9 begin
10 for I in List'Range loop
11 Sum := Sum + List (I);
12 end loop;
13
14 return (Sum / List'Length);
15 end Average;
16
17 Vals : constant Int_Array (1 .. 4) := (2, 2, 4, 4);
18begin
19 Ada.Text_IO.Put_Line ("Average: " & Integer'Image (Average (Vals)));
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_Ada
MD5: 52abb574d7a8b3bdb56715735dcd1d54

Runtime output

Average: 3

We will explore more about the syntax of loops in Ada in a future section of
this course; but for now, notice that the I variable used as the loop
index is not declared in the declarative section!

Declaration Flippy Floppy

Something peculiar that you may have noticed about declarations in Ada is
that they are backwards from the way C does declarations. The C language
expects the type followed by the variable name. Ada expects the variable
name followed by a colon and then the type.

The next block in the Ada example is between the begin and end
keywords. This is where your statements will live. You can create new scopes by
using the declare keyword:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- variable declaration
 6 A, B : Integer := 0;
 7 C : Integer := 100;
 8 D : Integer;
 9begin
10 -- Ada does not have a shortcut format for increment like in C
11 A := A + 1;
12
13 -- regular addition
14 D := A + B + C;
15
16 -- printing the result
17 Ada.Text_IO.Put_Line ("D =" & D'Img);
18
19 declare
20 E : constant Integer := D * 100;
21 begin
22 -- printing the result
23 Ada.Text_IO.Put_Line ("E =" & E'Img);
24 end;
25
26end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Block_Ada
MD5: 9239b993a7eadb13a27bd3618a03431f

Runtime output

D = 101
E = 10100

Notice that we declared a new variable E whose scope only exists in our
newly defined block. The equivalent C code is:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // variable declarations
 6 int a = 0, b = 0, c = 100, d;
 7
 8 // c shorthand for increment
 9 a++;
10
11 // regular addition
12 d = a + b + c;
13
14 // printing the result
15 printf("d = %d\n", d);
16
17 {
18 const int e = d * 100;
19 printf("e = %d\n", e);
20 }
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Block_C
MD5: 1a837795575ddc026738d92c8655ab6c

Runtime output

d = 101
e = 10100

Fun Fact about the C language assignment operator =: Did you know that
an assignment in C can be used in an expression? Let's look at an example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 0;
 6
 7 if (a = 10)
 8 printf("True\n");
 9 else
10 printf("False\n");
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Equal_C
MD5: 2d00ddf7e154cb888082c86b8fd36c58

Runtime output

True

Run the above code example. What does it output? Is that what you were
expecting?

The author of the above code example probably meant to test if a == 10 in
the if statement but accidentally typed = instead of ==. Because C
treats assignment as an expression, it was able to evaluate a = 10.

Let's look at the equivalent Ada code:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 A : Integer := 0;
 6begin
 7
 8 if A := 10 then
 9 Put_Line ("True");
10 else
11 Put_Line ("False");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Equal_Ada
MD5: 1500b264531dfcc7a62eeed2f22f511b

The above code will not compile. This is because Ada does no allow assignment
as an expression.

The "use" clause

You'll notice in the above code example, after with Ada.Text_IO;
there is a new statement we haven't seen before —
use Ada.Text_IO;. You may also notice that we are not using the
Ada.Text_IO prefix before the Put_Line statements. When we
add the use clause it tells the compiler that we won't be using the prefix
in the call to subprograms of that package. The use clause is something to
use with caution. For example: if we use the Ada.Text_IO package and
we also have a Put_Line subprogram in our current compilation unit
with the same signature, we have a (potential) collision!

Conditions

The syntax of an if statement:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // try changing the initial value to change the
 6 // output of the program
 7 int v = 0;
 8
 9 if (v > 0) {
10 printf("Positive\n");
11 }
12 else if (v < 0) {
13 printf("Negative\n");
14 }
15 else {
16 printf("Zero\n");
17 }
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Condition_C
MD5: 69203e679085e73394d3620a5954262a

Runtime output

Zero

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- try changing the initial value to change the
 6 -- output of the program
 7 V : constant Integer := 0;
 8begin
 9 if V > 0 then
10 Put_Line ("Positive");
11 elsif V < 0 then
12 Put_Line ("Negative");
13 else
14 Put_Line ("Zero");
15 end if;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Condition_Ada
MD5: 417e557708472f9022db7d8c1ed6aa33

Runtime output

Zero

In Ada, everything that appears between the if and then keywords
is the conditional expression, no parentheses are required. Comparison operators
are the same except for:

	Operator

	C

	Ada

	Equality

	==

	=

	Inequality

	!=

	/=

	Not

	!

	not

	And

	&&

	and

	Or

	||

	or

The syntax of a switch/case statement:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // try changing the initial value to change the
 6 // output of the program
 7 int v = 0;
 8
 9 switch(v) {
10 case 0:
11 printf("Zero\n");
12 break;
13 case 1: case 2: case 3: case 4: case 5:
14 case 6: case 7: case 8: case 9:
15 printf("Positive\n");
16 break;
17 case 10: case 12: case 14: case 16: case 18:
18 printf("Even number between 10 and 18\n");
19 break;
20 default:
21 printf("Something else\n");
22 break;
23 }
24
25 return 0;
26}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_C
MD5: 1bdb3d0c151d71280ef9039841f7ee58

Runtime output

Zero

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- try changing the initial value to change the
 6 -- output of the program
 7 V : constant Integer := 0;
 8begin
 9 case V is
10 when 0 =>
11 Put_Line ("Zero");
12 when 1 .. 9 =>
13 Put_Line ("Positive");
14 when 10 | 12 | 14 | 16 | 18 =>
15 Put_Line ("Even number between 10 and 18");
16 when others =>
17 Put_Line ("Something else");
18 end case;
19end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_Ada
MD5: 09e2318b56069281c95f23310dc121d1

Runtime output

Zero

Switch or Case?

A switch statement in C is the same as a case statement in Ada. This may be
a little strange because C uses both keywords in the statement syntax.
Let's make an analogy between C and Ada: C's switch is to Ada's
case as C's case is to Ada's when.

Notice that in Ada, the case statement does not use the break keyword. In
C, we use break to stop the execution of a case branch from falling
through to the next branch. Here is an example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v = 0;
 6
 7 switch(v) {
 8 case 0:
 9 printf("Zero\n");
10 case 1:
11 printf("One\n");
12 default:
13 printf("Other\n");
14 }
15
16 return 0;
17}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_Break_C
MD5: fd0389205476f161655caf32244d9054

Runtime output

Zero
One
Other

Run the above code with v = 0. What prints? What prints when we change the
assignment to v = 1?

When v = 0 the program outputs the strings Zero then One then
Other. This is called fall through. If you add the break statements
back into the switch you can stop this fall through behavior from
happening. The reason why fall through is allowed in C is to allow the behavior
from the previous example where we want a specific branch to execute for
multiple inputs. Ada solves this a different way because it is possible, or
even probable, that the developer might forget a break statement
accidentally. So Ada does not allow fall through. Instead, you can use Ada's
syntax to identify when a specific branch can be executed by more than one
input. If you want a range of values for a specific branch you can use the
First .. Last notation. If you want a few non-consecutive values you can
use the Value1 | Value2 | Value3 notation.

Instead of using the word default to denote the catch-all case, Ada uses
the others keyword.

Loops

Let's start with some syntax:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v;
 6
 7 // this is a while loop
 8 v = 1;
 9 while(v < 100) {
10 v *= 2;
11 }
12 printf("v = %d\n", v);
13
14 // this is a do while loop
15 v = 1;
16 do {
17 v *= 2;
18 } while(v < 200);
19 printf("v = %d\n", v);
20
21 // this is a for loop
22 v = 0;
23 for(int i = 0; i < 5; ++i) {
24 v += (i * i);
25 }
26 printf("v = %d\n", v);
27
28 // this is a forever loop with a conditional exit
29 v = 0;
30 while(1) {
31 // do stuff here
32 v += 1;
33 if(v == 10)
34 break;
35 }
36 printf("v = %d\n", v);
37
38 // this is a loop over an array
39 {
40 #define ARR_SIZE (10)
41 const int arr[ARR_SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
42 int sum = 0;
43
44 for(int i = 0; i < ARR_SIZE; ++i) {
45 sum += arr[i];
46 }
47 printf("sum = %d\n", sum);
48 }
49
50 return 0;
51}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loops_C
MD5: bcd8963884e2b2a5e364219f9b6b8fbc

Runtime output

v = 128
v = 256
v = 30
v = 10
sum = 55

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 V : Integer;
 5begin
 6 -- this is a while loop
 7 V := 1;
 8 while V < 100 loop
 9 V := V * 2;
10 end loop;
11 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
12
13 -- Ada doesn't have an explicit do while loop
14 -- instead you can use the loop and exit keywords
15 V := 1;
16 loop
17 V := V * 2;
18 exit when V >= 200;
19 end loop;
20 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
21
22 -- this is a for loop
23 V := 0;
24 for I in 0 .. 4 loop
25 V := V + (I * I);
26 end loop;
27 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
28
29 -- this is a forever loop with a conditional exit
30 V := 0;
31 loop
32 -- do stuff here
33 V := V + 1;
34 exit when V = 10;
35 end loop;
36 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
37
38 -- this is a loop over an array
39 declare
40 type Int_Array is array (Natural range 1 .. 10) of Integer;
41
42 Arr : constant Int_Array := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
43 Sum : Integer := 0;
44 begin
45 for I in Arr'Range loop
46 Sum := Sum + Arr (I);
47 end loop;
48 Ada.Text_IO.Put_Line ("Sum = " & Integer'Image (Sum));
49 end;
50end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loops_Ada
MD5: c09a092f8d2f682ce758d4bf059b954a

Runtime output

V = 128
V = 256
V = 30
V = 10
Sum = 55

The loop syntax in Ada is pretty straightforward. The loop and end
loop keywords are used to open and close the loop scope. Instead of using the
break keyword to exit the loop, Ada has the exit statement. The
exit statement can be combined with a logic expression using the
exit when syntax.

The major deviation in loop syntax is regarding for loops. You'll notice, in C,
that you sometimes declare, and at least initialize a loop counter variable,
specify a loop predicate, or an expression that indicates when the loop should
continue executing or complete, and last you specify an expression to update
the loop counter.

[C]

for (initialization expression; loop predicate; update expression) {
 // some statements
}

In Ada, you don't declare or initialize a loop counter or specify an update
expression. You only name the loop counter and give it a range to loop over.
The loop counter is read-only! You cannot modify the loop counter inside
the loop like you can in C. And the loop counter will increment consecutively
along the specified range. But what if you want to loop over the range in
reverse order?

[C]

main.c

 1#include <stdio.h>
 2
 3#define MY_RANGE (10)
 4
 5int main(int argc, const char * argv[])
 6{
 7
 8 for (int i = MY_RANGE; i >= 0; --i) {
 9 printf("%d\n", i);
10 }
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Counter_C
MD5: 4e70078ae51d113b8fa02340258c5ed5

Runtime output

10
9
8
7
6
5
4
3
2
1
0

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 My_Range : constant := 10;
 6begin
 7 for I in reverse 0 .. My_Range loop
 8 Put_Line (I'Img);
 9 end loop;
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Counter_Ada
MD5: f25ed1a91c82620f16cd3084a6a0f475

Runtime output

 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

Tick Image

Strangely enough, Ada people call the single apostrophe symbol, ',
"tick". This "tick" says the we are accessing an attribute of the variable.
When we do 'Img on a variable of a numerical type, we are going to
return the string version of that numerical type. So in the for loop above,
I'Img, or "I tick image" will return the string representation of
the numerical value stored in I. We have to do this because Put_Line is
expecting a string as an input parameter.

We'll discuss attributes in more details
later in this chapter.

In the above example, we are traversing over the range in reverse order. In
Ada, we use the reverse keyword to accomplish this.

In many cases, when we are writing a for loop, it has something to do with
traversing an array. In C, this is a classic location for off-by-one errors.
Let's see an example in action:

[C]

main.c

 1#include <stdio.h>
 2
 3#define LIST_LENGTH (100)
 4
 5int main(int argc, const char * argv[])
 6{
 7 int list[LIST_LENGTH];
 8
 9 for(int i = LIST_LENGTH; i > 0; --i) {
10 list[i] = LIST_LENGTH - i;
11 }
12
13 for (int i = 0; i < LIST_LENGTH; ++i)
14 {
15 printf("%d ", list[i]);
16
17 if (i % 10 == 0) {
18 printf("\n");
19 }
20 }
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_C
MD5: 710ce30066551d1aada8d4e98a6004b1

Runtime output

0
99 98 97 96 95 94 93 92 91 90
89 88 87 86 85 84 83 82 81 80
79 78 77 76 75 74 73 72 71 70
69 68 67 66 65 64 63 62 61 60
59 58 57 56 55 54 53 52 51 50
49 48 47 46 45 44 43 42 41 40
39 38 37 36 35 34 33 32 31 30
29 28 27 26 25 24 23 22 21 20
19 18 17 16 15 14 13 12 11 10
9 8 7 6 5 4 3 2 1

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Int_Array is array (Natural range 1 .. 100) of Integer;
 6
 7 List : Int_Array;
 8begin
 9
10 for I in reverse List'Range loop
11 List (I) := List'Last - I;
12 end loop;
13
14 for I in List'Range loop
15 Put (List (I)'Img & " ");
16
17 if I mod 10 = 0 then
18 New_Line;
19 end if;
20 end loop;
21
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_Ada
MD5: 340b935d42a80671bb050bdad1b032f7

Runtime output

 99 98 97 96 95 94 93 92 91 90
 89 88 87 86 85 84 83 82 81 80
 79 78 77 76 75 74 73 72 71 70
 69 68 67 66 65 64 63 62 61 60
 59 58 57 56 55 54 53 52 51 50
 49 48 47 46 45 44 43 42 41 40
 39 38 37 36 35 34 33 32 31 30
 29 28 27 26 25 24 23 22 21 20
 19 18 17 16 15 14 13 12 11 10
 9 8 7 6 5 4 3 2 1 0

The above Ada and C code should initialize an array using a for loop. The
initial values in the array should be contiguously decreasing from 99 to 0 as
we index from the first index to the last index. In other words, the first
index has a value of 99, the next has 98, the next 97 ... the last has a value
of 0.

If you run both the C and Ada code above you'll notice that the outputs of the
two programs are different. Can you spot why?

In the C code there are two problems:

	There's a buffer overflow in the first iteration of the loop. We would need
to modify the loop initialization to int i = LIST_LENGTH - 1;. The loop
predicate should be modified to i >= 0;

	The C code also has another off-by-one problem in the math to compute the
value stored in list[i]. The expression should be changed to be
list[i] = LIST_LENGTH - i - 1;.

These are typical off-by-one problems that plagues C programs. You'll notice
that we didn't have this problem with the Ada code because we aren't defining
the loop with arbitrary numeric literals. Instead we are accessing attributes
of the array we want to manipulate and are using a keyword to determine the
indexing direction.

We can actually simplify the Ada for loop a little further using iterators:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Int_Array is array (Natural range 1 .. 100) of Integer;
 6
 7 List : Int_Array;
 8begin
 9
10 for I in reverse List'Range loop
11 List (I) := List'Last - I;
12 end loop;
13
14 for I of List loop
15 Put (I'Img & " ");
16
17 if I mod 10 = 0 then
18 New_Line;
19 end if;
20 end loop;
21
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_Ada_Simplified
MD5: 612046826199b00ed61271d6215596fe

Runtime output

 99 98 97 96 95 94 93 92 91 90
 89 88 87 86 85 84 83 82 81 80
 79 78 77 76 75 74 73 72 71 70
 69 68 67 66 65 64 63 62 61 60
 59 58 57 56 55 54 53 52 51 50
 49 48 47 46 45 44 43 42 41 40
 39 38 37 36 35 34 33 32 31 30
 29 28 27 26 25 24 23 22 21 20
 19 18 17 16 15 14 13 12 11 10
 9 8 7 6 5 4 3 2 1 0

In the second for loop, we changed the syntax to for I of List. Instead
of I being the index counter, it is now an iterator that references the
underlying element. This example of Ada code is identical to the last bit of
Ada code. We just used a different method to index over the second for loop.
There is no C equivalent to this Ada feature, but it is similar to C++'s range
based for loop.

Type System

Strong Typing

Ada is considered a "strongly typed" language. This means that the language
does not define any implicit type conversions. C does define implicit type
conversions, sometimes referred to as integer promotion. The rules for
promotion are fairly straightforward in simple expressions but can get
confusing very quickly. Let's look at a typical place of confusion with
implicit type conversion:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 unsigned char a = 0xFF;
 6 char b = 0xFF;
 7
 8 printf("Does a == b?\n");
 9 if(a == b)
10 printf("Yes.\n");
11 else
12 printf("No.\n");
13
14 printf("a: 0x%08X, b: 0x%08X\n", a, b);
15
16 return 0;
17}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_C
MD5: cab1ac9e2c86076d8435d53904783ba0

Runtime output

Does a == b?
No.
a: 0x000000FF, b: 0xFFFFFFFF

Run the above code. You will notice that a != b! If we look at the output
of the last printf statement we will see the problem. a is an
unsigned number where b is a signed number. We stored a value of 0xFF
in both variables, but a treated this as the decimal number 255 while
b treated this as the decimal number -1. When we compare the two
variables, of course they aren't equal; but that's not very intuitive. Let's
look at the equivalent Ada example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Char is range 0 .. 255;
 6 type Unsigned_Char is mod 256;
 7
 8 A : Char := 16#FF#;
 9 B : Unsigned_Char := 16#FF#;
10begin
11
12 Put_Line ("Does A = B?");
13
14 if A = B then
15 Put_Line ("Yes");
16 else
17 Put_Line ("No");
18 end if;
19
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada
MD5: d6ef2668809159e9fb0d42f91e893222

Build output

main.adb:14:09: error: invalid operand types for operator "="
main.adb:14:09: error: left operand has type "Char" defined at line 5
main.adb:14:09: error: right operand has type "Unsigned_Char" defined at line 6
gprbuild: *** compilation phase failed

If you try to run this Ada example you will get a compilation error. This is
because the compiler is telling you that you cannot compare variables of two
different types. We would need to explicitly cast one side to make the
comparison against two variables of the same type. By enforcing the explicit
cast we can't accidentally end up in a situation where we assume something will
happen implicitly when, in fact, our assumption is incorrect.

Another example: you can't divide an integer by a float. You need to perform
the division operation using values of the same type, so one value must be
explicitly converted to match the type of the other (in this case the more
likely conversion is from integer to float). Ada is designed to guarantee that
what's done by the program is what's meant by the programmer, leaving as little
room for compiler interpretation as possible. Let's have a look at the
following example:

[Ada]

strong_typing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Strong_Typing is
 4 Alpha : constant Integer := 1;
 5 Beta : constant Integer := 10;
 6 Result : Float;
 7begin
 8 Result := Float (Alpha) / Float (Beta);
 9
10 Put_Line (Float'Image (Result));
11end Strong_Typing;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada_2
MD5: bf91f01b499bcd7da1df751a9f91a767

Runtime output

 1.00000E-01

[C]

main.c

 1#include <stdio.h>
 2
 3void weakTyping (void) {
 4 const int alpha = 1;
 5 const int beta = 10;
 6 float result;
 7
 8 result = alpha / beta;
 9
10 printf("%f\n", result);
11}
12
13int main(int argc, const char * argv[])
14{
15 weakTyping();
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_C_2
MD5: e4310900cd1195d6e3d349e0c4aa758a

Runtime output

0.000000

Are the three programs above equivalent? It may seem like Ada is just adding
extra complexity by forcing you to make the conversion from Integer to
Float explicit. In fact, it significantly changes the behavior of the
computation. While the Ada code performs a floating point operation 1.0 / 10.0
and stores 0.1 in Result, the C version instead store 0.0 in
result. This is because the C version perform an integer operation between
two integer variables: 1 / 10 is 0. The
result of the integer division is then converted to a float and stored.
Errors of this sort can be very hard to locate in complex pieces of code, and
systematic specification of how the operation should be interpreted helps to
avoid this class of errors. If an integer division was actually intended in the
Ada case, it is still necessary to explicitly convert the final result to
Float:

[Ada]

-- Perform an Integer division then convert to Float
Result := Float (Alpha / Beta);

The complete example would then be:

[Ada]

strong_typing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Strong_Typing is
 4 Alpha : constant Integer := 1;
 5 Beta : constant Integer := 10;
 6 Result : Float;
 7begin
 8 Result := Float (Alpha / Beta);
 9
10 Put_Line (Float'Image (Result));
11end Strong_Typing;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada_2
MD5: 50d6a6a3270b51880c43c07f077760b6

Runtime output

 0.00000E+00

Floating Point Literals

In Ada, a floating point literal must be written with both an integral and
decimal part. 10 is not a valid literal for a floating point value,
while 10.0 is.

Language-Defined Types

The principal scalar types predefined by Ada are Integer, Float,
Boolean, and Character. These correspond to int, float,
int (when used for Booleans), and char, respectively. The names for
these types are not reserved words; they are regular identifiers. There are
other language-defined integer and floating-point types as well. All have
implementation-defined ranges and precision.

Application-Defined Types

Ada's type system encourages programmers to think about data at a high level of
abstraction. The compiler will at times output a simple efficient machine
instruction for a full line of source code (and some instructions can be
eliminated entirely). The careful programmer's concern that the operation
really makes sense in the real world would be satisfied, and so would the
programmer's concern about performance.

The next example below defines two different metrics: area and distance. Mixing
these two metrics must be done with great care, as certain operations do not
make sense, like adding an area to a distance. Others require knowledge of the
expected semantics; for example, multiplying two distances. To help avoid
errors, Ada requires that each of the binary operators +, -, *, and
/ for integer and floating-point types take operands of the same type and
return a value of that type.

[Ada]

main.adb

 1procedure Main is
 2 type Distance is new Float;
 3 type Area is new Float;
 4
 5 D1 : Distance := 2.0;
 6 D2 : Distance := 3.0;
 7 A : Area;
 8begin
 9 D1 := D1 + D2; -- OK
10 D1 := D1 + A; -- NOT OK: incompatible types for "+"
11 A := D1 * D2; -- NOT OK: incompatible types for ":="
12 A := Area (D1 * D2); -- OK
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Application_Defined_Types
MD5: 6a21d6281cc529bbf8ce2216d7e4a770

Build output

main.adb:10:13: error: invalid operand types for operator "+"
main.adb:10:13: error: left operand has type "Distance" defined at line 2
main.adb:10:13: error: right operand has type "Area" defined at line 3
main.adb:11:13: error: expected type "Area" defined at line 3
main.adb:11:13: error: found type "Distance" defined at line 2
gprbuild: *** compilation phase failed

Even though the Distance and Area types above are just
Float, the compiler does not allow arbitrary mixing of values of these
different types. An explicit conversion (which does not necessarily mean any
additional object code) is necessary.

The predefined Ada rules are not perfect; they admit some problematic cases
(for example multiplying two Distance yields a Distance) and
prohibit some useful cases (for example multiplying two Distances should
deliver an Area). These situations can be handled through other
mechanisms. A predefined operation can be identified as abstract to make it
unavailable; overloading can be used to give new interpretations to existing
operator symbols, for example allowing an operator to return a value from a
type different from its operands; and more generally, GNAT has introduced a
facility that helps perform dimensionality checking.

Ada enumerations work similarly to C enum:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 D : Day := Monday;
12begin
13 null;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Ada
MD5: 51abd1863970e14ff86859c1aae11fe8

[C]

main.c

 1enum Day {
 2 Monday,
 3 Tuesday,
 4 Wednesday,
 5 Thursday,
 6 Friday,
 7 Saturday,
 8 Sunday
 9};
10
11int main(int argc, const char * argv[])
12{
13 enum Day d = Monday;
14
15 return 0;
16}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_C
MD5: d9f6724759375a126a6b5d8dceea3f24

But even though such enumerations may be implemented by the compiler as numeric
values, at the language level Ada will not confuse the fact that Monday
is a Day and is not an Integer. You can compare a Day with
another Day, though. To specify implementation details like the numeric
values that correspond with enumeration values in C you include them in the
original enum declaration:

[C]

main.c

 1#include <stdio.h>
 2
 3enum Day {
 4 Monday = 10,
 5 Tuesday = 11,
 6 Wednesday = 12,
 7 Thursday = 13,
 8 Friday = 14,
 9 Saturday = 15,
10 Sunday = 16
11};
12
13int main(int argc, const char * argv[])
14{
15 enum Day d = Monday;
16
17 printf("d = %d\n", d);
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Values_C
MD5: 48ae1c84dafabde7a16de5305e106a80

Runtime output

d = 10

But in Ada you must use both a type definition for Day as well as a
separate representation clause for it like:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Day is
 5 (Monday,
 6 Tuesday,
 7 Wednesday,
 8 Thursday,
 9 Friday,
10 Saturday,
11 Sunday);
12
13 -- Representation clause for Day type:
14 for Day use
15 (Monday => 10,
16 Tuesday => 11,
17 Wednesday => 12,
18 Thursday => 13,
19 Friday => 14,
20 Saturday => 15,
21 Sunday => 16);
22
23 D : Day := Monday;
24 V : Integer;
25begin
26 V := Day'Enum_Rep (D);
27 Ada.Text_IO.Put_Line (Integer'Image (V));
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Values
MD5: 9a4fa1a899cb8c240105bf8ad6dbfde3

Runtime output

 10

Note that however, unlike C, values for enumerations in Ada have to be unique.

Type Ranges

Contracts can be associated with types and variables, to refine values and
define what are considered valid values. The most common kind of contract is a
range constraint introduced with the range reserved word, for example:

[Ada]

main.adb

 1procedure Main is
 2 type Grade is range 0 .. 100;
 3
 4 G1, G2 : Grade;
 5 N : Integer;
 6begin
 7 -- ... -- Initialization of N
 8 G1 := 80; -- OK
 9 G1 := N; -- Illegal (type mismatch)
10 G1 := Grade (N); -- Legal, run-time range check
11 G2 := G1 + 10; -- Legal, run-time range check
12 G1 := (G1 + G2) / 2; -- Legal, run-time range check
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Range_Check
MD5: 0f249b06e373497ae94b6055a37187c8

Build output

main.adb:9:10: error: expected type "Grade" defined at line 2
main.adb:9:10: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

In the above example, Grade is a new integer type associated with a
range check. Range checks are dynamic and are meant to enforce the property
that no object of the given type can have a value outside the specified range.
In this example, the first assignment to G1 is correct and will not
raise a run-time exception. Assigning N to G1 is illegal since
Grade is a different type than Integer. Converting N to
Grade makes the assignment legal, and a range check on the conversion
confirms that the value is within 0 .. 100. Assigning G1 + 10 to
G2 is legal since + for Grade returns a Grade (note
that the literal 10 is interpreted as a Grade value in this
context), and again there is a range check.

The final assignment illustrates an interesting but subtle point. The
subexpression G1 + G2 may be outside the range of Grade, but the
final result will be in range. Nevertheless, depending on the representation
chosen for Grade, the addition may overflow. If the compiler represents
Grade values as signed 8-bit integers (i.e., machine numbers in the
range -128 .. 127) then the sum G1 + G2 may exceed 127, resulting
in an integer overflow. To prevent this, you can use explicit conversions and
perform the computation in a sufficiently large integer type, for example:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Grade is range 0 .. 100;
 5
 6 G1, G2 : Grade := 99;
 7begin
 8 G1 := Grade ((Integer (G1) + Integer (G2)) / 2);
 9 Ada.Text_IO.Put_Line (Grade'Image (G1));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Range_And_Explicit_Conversion
MD5: d317fd95099e49017c4a4c1c52b7f8be

Runtime output

 99

Range checks are useful for detecting errors as early as possible. However,
there may be some impact on performance. Modern compilers do know how to remove
redundant checks, and you can deactivate these checks altogether if you have
sufficient confidence that your code will function correctly.

Types can be derived from the representation of any other type. The new derived
type can be associated with new constraints and operations. Going back to the
Day example, one can write:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 type Business_Day is new Day range Monday .. Friday;
12 type Weekend_Day is new Day range Saturday .. Sunday;
13begin
14 null;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enum_Ranges_1
MD5: fd775ad4990d5636607d3a0d9b00044d

Since these are new types, implicit conversions are not allowed. In this case,
it's more natural to create a new set of constraints for the same type, instead
of making completely new ones. This is the idea behind subtypes in Ada. A
subtype is a type with optional additional constraints. For example:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 subtype Business_Day is Day range Monday .. Friday;
12 subtype Weekend_Day is Day range Saturday .. Sunday;
13 subtype Dice_Throw is Integer range 1 .. 6;
14begin
15 null;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enum_Ranges_2
MD5: 5bcbde5b9f1aea57ff172fcfc89e1c41

These declarations don't create new types, just new names for constrained
ranges of their base types.

The purpose of numeric ranges is to express some application-specific
constraint that we want the compiler to help us enforce. More importantly,
we want the compiler to tell us when that constraint cannot be met — when
the underlying hardware cannot support the range given. There are two things to
consider:

	just a range constraint, such as A : Integer range 0 .. 10;, or

	a type declaration, such as type Result is range 0 .. 1_000_000_000;.

Both represent some sort of application-specific constraint, but in addition,
the type declaration promotes portability because it won't compile on targets
that do not have a sufficiently large hardware numeric type. That's a
definition of portability that is preferable to having something compile
anywhere but not run correctly, as in C.

Unsigned And Modular Types

Unsigned integer numbers are quite common in embedded applications. In C, you
can use them by declaring unsigned int variables. In Ada, you have two
options:

	declare custom unsigned range types;

	In addition, you can declare custom range subtypes or use existing
subtypes such as Natural.

	declare custom modular types.

The following table presents the main features of each type. We discuss these
types right after.

	Feature

	[C] unsigned int

	[Ada] Unsigned range

	[Ada] Modular

	Excludes negative
value

	✓

	✓

	✓

	Wraparound

	✓

	
	✓

When declaring custom range types in Ada, you may use the full range in the
same way as in C. For example, this is the declaration of a 32-bit unsigned
integer type and the X variable in Ada:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 type Unsigned_Int_32 is range 0 .. 2 ** 32 - 1;
5
6 X : Unsigned_Int_32 := 42;
7begin
8 Put_Line ("X = " & Unsigned_Int_32'Image (X));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_32_Ada
MD5: 0a179ce327c022468f66b6814a981b62

Runtime output

X = 42

In C, when unsigned int has a size of 32 bits, this corresponds to the
following declaration:

[C]

main.c

 1#include <stdio.h>
 2#include <limits.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 unsigned int x = 42;
 7 printf("x = %u\n", x);
 8
 9 return 0;
10}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_32_C
MD5: 546068de216de96282490e81a0f7df26

Runtime output

x = 42

Another strategy is to declare subtypes for existing signed types and specify
just the range that excludes negative numbers. For example, let's declare a
custom 32-bit signed type and its unsigned subtype:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Signed_Int_32 is range -2 ** 31 .. 2 ** 31 - 1;
 5
 6 subtype Unsigned_Int_31 is Signed_Int_32 range 0 .. Signed_Int_32'Last;
 7 -- Equivalent to:
 8 -- subtype Unsigned_Int_31 is Signed_Int_32 range 0 .. 2 ** 31 - 1;
 9
10 X : Unsigned_Int_31 := 42;
11begin
12 Put_Line ("X = " & Unsigned_Int_31'Image (X));
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_31_Ada
MD5: 2ef2b5bfd54821ceb35faa222e649156

Runtime output

X = 42

In this case, we're just skipping the sign bit of the Signed_Int_32
type. In other words, while Signed_Int_32 has a size of 32 bits,
Unsigned_Int_31 has a range of 31 bits, even if the base type has
32 bits.

Note that the declaration above is actually similar to the existing
Natural subtype. Ada provides the following standard subtypes:

subtype Natural is Integer range 0..Integer'Last;
subtype Positive is Integer range 1..Integer'Last;

Since they're standard subtypes, you can declare variables of those subtypes
directly in your implementation, in the same way as you can declare
Integer variables.

As indicated in the table above, however, there is a difference in behavior for
the variables we just declared, which occurs in case of overflow. Let's
consider this C example:

[C]

main.c

 1#include <stdio.h>
 2#include <limits.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 unsigned int x = UINT_MAX + 1;
 7 /* Now: x == 0 */
 8
 9 printf("x = %u\n", x);
10
11 return 0;
12}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_C
MD5: 7d5dcf65471304ff8f303195359b4790

Runtime output

x = 0

The corresponding code in Ada raises an exception:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Unsigned_Int_32 is range 0 .. 2 ** 32 - 1;
 5
 6 X : Unsigned_Int_32 := Unsigned_Int_32'Last + 1;
 7 -- Overflow: exception is raised!
 8begin
 9 Put_Line ("X = " & Unsigned_Int_32'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_Ada
MD5: ee4c3e905c59f5c8d87311e13d079836

Build output

main.adb:6:48: warning: value not in range of type "Unsigned_Int_32" defined at line 4 [enabled by default]
main.adb:6:48: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:6 range check failed

While the C uses modulo arithmetic for unsigned integer, Ada doesn't use it for
the Unsigned_Int_32 type. Ada does, however, support modular types
via type definitions using the mod keyword. In this example, we declare
a 32-bit modular type:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Unsigned_32 is mod 2**32;
 5
 6 X : Unsigned_32 := Unsigned_32'Last + 1;
 7 -- Now: X = 0
 8begin
 9 Put_Line ("X = " & Unsigned_32'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_Ada
MD5: 4ed963ab372cafc8e7a19d9c3107276b

Runtime output

X = 0

In this case, the behavior is the same as in the C declaration above.

Modular types, unlike Ada's signed integers, also provide bit-wise operations,
a typical application for unsigned integers in C. In Ada, you can use operators
such as and, or, xor and not. You can also use
typical bit-shifting operations, such as Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right.

Attributes

Attributes start with a single apostrophe ("tick"), and they allow you to query
properties of, and perform certain actions on, declared entities such as types,
objects, and subprograms. For example, you can determine the first and last
bounds of scalar types, get the sizes of objects and types, and convert values
to and from strings. This section provides an overview of how attributes work.
For more information on the many attributes defined by the language, you can
refer directly to the Ada Language Reference Manual.

The 'Image and 'Value attributes allow you to transform a scalar
value into a String and vice-versa. For example:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 A : Integer := 10;
5begin
6 Put_Line (Integer'Image (A));
7 A := Integer'Value ("99");
8 Put_Line (Integer'Image (A));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Image_Attribute
MD5: 1fcfc79ec599a26e21aef7eacffcf96e

Runtime output

 10
 99

Important

Semantically, attributes are equivalent to subprograms. For example,
Integer'Image is defined as follows:

function Integer'Image(Arg : Integer'Base) return String;

Certain attributes are provided only for certain kinds of types. For example,
the 'Val and 'Pos attributes for an enumeration type associates a
discrete value with its position among its peers. One circuitous way of moving
to the next character of the ASCII table is:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 C : Character := 'a';
5begin
6 Put (C);
7 C := Character'Val (Character'Pos (C) + 1);
8 Put (C);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Character_1
MD5: 742bbaeb74e5dd9fa73089c0d1aa0fde

Runtime output

ab

A more concise way to get the next value in Ada is to use the 'Succ
attribute:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 C : Character := 'a';
5begin
6 Put (C);
7 C := Character'Succ (C);
8 Put (C);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Character_1
MD5: 842eeff2b82dcdb8c73547a33d03995b

Runtime output

ab

You can get the previous value using the 'Pred attribute. Here is the
equivalent in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 char c = 'a';
 6 printf("%c", c);
 7 c++;
 8 printf("%c", c);
 9
10 return 0;
11}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_C
MD5: 40bfbd6a672bc3fdb7e8f2f2d7101b19

Runtime output

ab

Other interesting examples are the 'First and 'Last attributes
which, respectively, return the first and last values of a scalar type. Using
32-bit integers, for instance, Integer'First returns -231 and
Integer'Last returns 231 - 1.

Arrays and Strings

C arrays are pointers with offsets, but the same is not the case for Ada.
Arrays in Ada are not interchangeable with operations on pointers, and array
types are considered first-class citizens. They have dedicated semantics such
as the availability of the array's boundaries at run-time. Therefore, unhandled
array overflows are impossible unless checks are suppressed. Any discrete type
can serve as an array index, and you can specify both the starting and ending
bounds — the lower bound doesn't necessarily have to be 0. Most of the
time, array types need to be explicitly declared prior to the declaration of an
object of that array type.

Here's an example of declaring an array of 26 characters, initializing the
values from 'a' to 'z':

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Character;
 5 Arr : Arr_Type (1 .. 26);
 6 C : Character := 'a';
 7begin
 8 for I in Arr'Range loop
 9 Arr (I) := C;
10 C := Character'Succ (C);
11
12 Put (Arr (I) & " ");
13
14 if I mod 7 = 0 then
15 New_Line;
16 end if;
17 end loop;
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Range_Ada
MD5: 8e0597f6c040c740b35c79bc4706829b

Runtime output

a b c d e f g
h i j k l m n
o p q r s t u
v w x y z

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 char Arr [26];
 6 char C = 'a';
 7
 8 for (int I = 0; I < 26; ++I) {
 9 Arr [I] = C++;
10 printf ("%c ", Arr [I]);
11
12 if ((I + 1) % 7 == 0) {
13 printf ("\n");
14 }
15 }
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Range_C
MD5: 1182155f46a0b69f73cd5937c23ed67d

Runtime output

a b c d e f g
h i j k l m n
o p q r s t u
v w x y z

In C, only the size of the array is given during declaration. In Ada, array
index ranges are specified using two values of a discrete type. In this
example, the array type declaration specifies the use of Integer as the
index type, but does not provide any constraints (use <>, pronounced
box, to specify "no constraints"). The constraints are defined in the object
declaration to be 1 to 26, inclusive. Arrays have an attribute called
'Range. In our example, Arr'Range can also be expressed as
Arr'First .. Arr'Last; both expressions will resolve to 1 .. 26.
So the 'Range attribute supplies the bounds for our for loop.
There is no risk of stating either of the bounds incorrectly, as one might do
in C where I <= 26 may be specified as the end-of-loop condition.

As in C, Ada String is an array of Character. Ada strings,
importantly, are not delimited with the special character '0' like they
are in C. It is not necessary because Ada uses the array's bounds to determine
where the string starts and stops.

Ada's predefined String type is very straightforward to use:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 My_String : String (1 .. 19) := "This is an example!";
5begin
6 Put_Line (My_String);
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Constrained_String
MD5: da2e88900c670f80b7380f87f2b89ec2

Runtime output

This is an example!

Unlike C, Ada does not offer escape sequences such as 'n'. Instead,
explicit values from the ASCII package must be concatenated (via the
concatenation operator, &). Here for example, is how to initialize a
line of text ending with a new line:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 My_String : String := "This is a line" & ASCII.LF;
5begin
6 Put (My_String);
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Constrained_String
MD5: 684bbbdf99d48ed6fd5c257183a6609f

Runtime output

This is a line

You see here that no constraints are necessary for this variable definition.
The initial value given allows the automatic determination of
My_String's bounds.

Ada offers high-level operations for copying, slicing, and assigning values to
arrays. We'll start with assignment. In C, the assignment operator doesn't make
a copy of the value of an array, but only copies the address or reference to
the target variable. In Ada, the actual array contents are duplicated. To get
the above behavior, actual pointer types would have to be defined and used.

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 2);
 6 A2 : Arr_Type (1 .. 2);
 7begin
 8 A1 (1) := 0;
 9 A1 (2) := 1;
10
11 A2 := A1;
12
13 for I in A2'Range loop
14 Put_Line (Integer'Image (A2 (I)));
15 end loop;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Copy_Ada
MD5: 4d4e9aa063c1f488e7cefa90083d06c2

Runtime output

 0
 1

[C]

main.c

 1#include <stdio.h>
 2#include <string.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 int A1 [2];
 7 int A2 [2];
 8
 9 A1 [0] = 0;
10 A1 [1] = 1;
11
12 memcpy (A2, A1, sizeof (int) * 2);
13
14 for (int i = 0; i < 2; i++) {
15 printf("%d\n", A2[i]);
16 }
17
18 return 0;
19}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Copy_C
MD5: 0dade800452673b7a82afe1c656f07e6

Runtime output

0
1

In all of the examples above, the source and destination arrays must have
precisely the same number of elements. Ada allows you to easily specify a
portion, or slice, of an array. So you can write the following:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 10) := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 6 A2 : Arr_Type (1 .. 5) := (1, 2, 3, 4, 5);
 7begin
 8 A2 (1 .. 3) := A1 (4 .. 6);
 9
10 for I in A2'Range loop
11 Put_Line (Integer'Image (A2 (I)));
12 end loop;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Slice
MD5: cb2a7de2cff8ea19025363886f8821e4

Runtime output

 4
 5
 6
 4
 5

This assigns the 4th, 5th, and 6th elements of A1 into the 1st, 2nd, and
3rd elements of A2. Note that only the length matters here: the values
of the indexes don't have to be equal; they slide automatically.

Ada also offers high level comparison operations which compare the contents of
arrays as opposed to their addresses:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 2) := (10, 20);
 6 A2 : Arr_Type (1 .. 2) := (10, 20);
 7begin
 8 if A1 = A2 then
 9 Put_Line ("A1 = A2");
10 else
11 Put_Line ("A1 /= A2");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Equal_Ada
MD5: 650a734875a02b2fb3678bbc3f8dd82a

Runtime output

A1 = A2

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int A1 [2] = { 10, 20 };
 6 int A2 [2] = { 10, 20 };
 7
 8 int eq = 1;
 9
10 for (int i = 0; i < 2; ++i) {
11 if (A1 [i] != A2 [i]) {
12 eq = 0;
13 break;
14 }
15 }
16
17 if (eq) {
18 printf("A1 == A2\n");
19 }
20 else {
21 printf("A1 != A2\n");
22 }
23
24 return 0;
25}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Equal_C
MD5: efe8717d931324bcbe8b70b03693c92e

Runtime output

A1 == A2

You can assign to all the elements of an array in each language in different
ways. In Ada, the number of elements to assign can be determined by looking at
the right-hand side, the left-hand side, or both sides of the assignment. When
bounds are known on the left-hand side, it's possible to use the others
expression to define a default value for all the unspecified array elements.
Therefore, you can write:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (-2 .. 42) := (others => 0);
 6begin
 7 -- use a slice to assign A1 elements 11 .. 19 to 1
 8 A1 (11 .. 19) := (others => 1);
 9
10 Put_Line ("---- A1 ----");
11 for I in A1'Range loop
12 Put_Line (Integer'Image (I) & " => " &
13 Integer'Image (A1 (I)));
14 end loop;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Assignment_Ada
MD5: 673d31f633a32b6bb1cce238150cfc80

Runtime output

---- A1 ----
-2 => 0
-1 => 0
 0 => 0
 1 => 0
 2 => 0
 3 => 0
 4 => 0
 5 => 0
 6 => 0
 7 => 0
 8 => 0
 9 => 0
 10 => 0
 11 => 1
 12 => 1
 13 => 1
 14 => 1
 15 => 1
 16 => 1
 17 => 1
 18 => 1
 19 => 1
 20 => 0
 21 => 0
 22 => 0
 23 => 0
 24 => 0
 25 => 0
 26 => 0
 27 => 0
 28 => 0
 29 => 0
 30 => 0
 31 => 0
 32 => 0
 33 => 0
 34 => 0
 35 => 0
 36 => 0
 37 => 0
 38 => 0
 39 => 0
 40 => 0
 41 => 0
 42 => 0

In this example, we're specifying that A1 has a range between -2 and 42.
We use (others => 0) to initialize all array elements with zero. In the
next example, the number of elements is determined by looking at the right-hand
side:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type := (1, 2, 3, 4, 5, 6, 7, 8, 9);
 6begin
 7 A1 := (1, 2, 3, others => 10);
 8
 9 Put_Line ("---- A1 ----");
10 for I in A1'Range loop
11 Put_Line (Integer'Image (I) & " => " &
12 Integer'Image (A1 (I)));
13 end loop;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Assignment_Ada
MD5: 3e3d69815373d1c61208df265903e89d

Runtime output

---- A1 ----
-2147483648 => 1
-2147483647 => 2
-2147483646 => 3
-2147483645 => 10
-2147483644 => 10
-2147483643 => 10
-2147483642 => 10
-2147483641 => 10
-2147483640 => 10

Since A1 is initialized with an aggregate of 9 elements, A1
automatically has 9 elements. Also, we're not specifying any range in the
declaration of A1. Therefore, the compiler uses the default range of the
underlying array type Arr_Type, which has an unconstrained range based
on the Integer type. The compiler selects the first element of that type
(Integer'First) as the start index of A1. If you replaced
Integer range <> in the declaration of the Arr_Type by
Positive range <>, then A1's start index would be
Positive'First — which corresponds to one.

Heterogeneous Data Structures

The structure corresponding to a C struct is an Ada record. Here
are some simple records:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 C : Float;
 7 end record;
 8
 9 V : R;
10begin
11 V.A := 0;
12 Put_Line ("V.A = " & Integer'Image (V.A));
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_Ada
MD5: 013f27dfc827355f32bea37fb267df9b

Runtime output

V.A = 0

[C]

main.c

 1#include <stdio.h>
 2
 3struct R {
 4 int A, B;
 5 float C;
 6};
 7
 8int main(int argc, const char * argv[])
 9{
10 struct R V;
11 V.A = 0;
12 printf("V.A = %d\n", V.A);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_C
MD5: 653b65bbb6ea02a512e439d912e11d7f

Runtime output

V.A = 0

Ada allows specification of default values for fields just like C. The values
specified can take the form of an ordered list of values, a named list of
values, or an incomplete list followed by others => <> to specify that
fields not listed will take their default values. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type R is record
 6 A, B : Integer := 0;
 7 C : Float := 0.0;
 8 end record;
 9
10 procedure Put_R (V : R; Name : String) is
11 begin
12 Put_Line (Name & " = ("
13 & Integer'Image (V.A) & ", "
14 & Integer'Image (V.B) & ", "
15 & Float'Image (V.C) & ")");
16 end Put_R;
17
18 V1 : constant R := (1, 2, 1.0);
19 V2 : constant R := (A => 1, B => 2, C => 1.0);
20 V3 : constant R := (C => 1.0, A => 1, B => 2);
21 V4 : constant R := (C => 1.0, others => <>);
22
23begin
24 Put_R (V1, "V1");
25 Put_R (V2, "V2");
26 Put_R (V3, "V3");
27 Put_R (V4, "V4");
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_Default_Ada
MD5: d0a9713e3bd9804c00ebf68cc7c196b7

Runtime output

V1 = (1, 2, 1.00000E+00)
V2 = (1, 2, 1.00000E+00)
V3 = (1, 2, 1.00000E+00)
V4 = (0, 0, 1.00000E+00)

Pointers

As a foreword to the topic of pointers, it's important to keep in mind the fact
that most situations that would require a pointer in C do not in Ada. In the
vast majority of cases, indirect memory management can be hidden from the
developer and thus saves from many potential errors. However, there are
situation that do require the use of pointers, or said differently that require
to make memory indirection explicit. This section will present Ada access
types, the equivalent of C pointers. A further section will provide more
details as to how situations that require pointers in C can be done without
access types in Ada.

We'll continue this section by explaining the difference between objects
allocated on the stack and objects allocated on the heap using the following
example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 end record;
 7
 8 procedure Put_R (V : R; Name : String) is
 9 begin
10 Put_Line (Name & " = ("
11 & Integer'Image (V.A) & ", "
12 & Integer'Image (V.B) & ")");
13 end Put_R;
14
15 V1, V2 : R;
16
17begin
18 V1.A := 0;
19 V1.B := 0;
20 V2 := V1;
21 V2.A := 1;
22
23 Put_R (V1, "V1");
24 Put_R (V2, "V2");
25end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_Ada
MD5: 0a4ade5aa12de5b0760d149c8e319d5f

Runtime output

V1 = (0, 0)
V2 = (1, 0)

[C]

main.c

 1#include <stdio.h>
 2
 3struct R {
 4 int A, B;
 5};
 6
 7void print_r(const struct R *v,
 8 const char *name)
 9{
10 printf("%s = (%d, %d)\n", name, v->A, v->B);
11}
12
13int main(int argc, const char * argv[])
14{
15 struct R V1, V2;
16 V1.A = 0;
17 V1.B = 0;
18 V2 = V1;
19 V2.A = 1;
20
21 print_r(&V1, "V1");
22 print_r(&V2, "V2");
23
24 return 0;
25}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_C
MD5: e604bf19c98927151f3b4989dc50747a

Runtime output

V1 = (0, 0)
V2 = (1, 0)

There are many commonalities between the Ada and C semantics above. In Ada and
C, objects are allocated on the stack and are directly accessed. V1 and
V2 are two different objects and the assignment statement copies the
value of V1 into V2. V1 and V2 are two distinct
objects.

Here's now a similar example, but using heap allocation instead:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 end record;
 7
 8 type R_Access is access R;
 9
10 procedure Put_R (V : R; Name : String) is
11 begin
12 Put_Line (Name & " = ("
13 & Integer'Image (V.A) & ", "
14 & Integer'Image (V.B) & ")");
15 end Put_R;
16
17 V1 : R_Access;
18 V2 : R_Access;
19begin
20 V1 := new R;
21 V1.A := 0;
22 V2 := V1;
23 V2.A := 1;
24
25 Put_R (V1.all, "V1");
26 Put_R (V2.all, "V2");
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Heap_Alloc_Ada
MD5: 963b48bb0a8585a9941d8fb2d0eda390

Runtime output

V1 = (1, 0)
V2 = (1, 0)

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4struct R {
 5 int A, B;
 6};
 7
 8void print_r(const struct R *v,
 9 const char *name)
10{
11 printf("%s = (%d, %d)\n", name, v->A, v->B);
12}
13
14int main(int argc, const char * argv[])
15{
16 struct R * V1, * V2;
17 V1 = malloc(sizeof(struct R));
18 V1->A = 0;
19 V2 = V1;
20 V2->A = 1;
21
22 print_r(V1, "V1");
23 print_r(V2, "V2");
24
25 return 0;
26}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Heap_Alloc_C
MD5: 5c832377403dfa8f00d70ef92bfeff65

Runtime output

V1 = (1, 0)
V2 = (1, 0)

In this example, an object of type R is allocated on the heap. The same
object is then referred to through V1 and V2. As in C, there's
no garbage collector in Ada, so objects allocated by the new operator need to
be expressly freed (which is not the case here).

Dereferencing is performed automatically in certain situations, for instance
when it is clear that the type required is the dereferenced object rather than
the pointer itself, or when accessing record members via a pointer. To
explicitly dereference an access variable, append .all. The equivalent
of V1->A in C can be written either as V1.A or V1.all.A.

Pointers to scalar objects in Ada and C look like:

[Ada]

main.adb

1procedure Main is
2 type A_Int is access Integer;
3 Var : A_Int := new Integer;
4begin
5 Var.all := 0;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_To_Scalars
MD5: 2e2bf53a9b5dc1098921d811be73a7f0

[C]

main.c

1#include <stdlib.h>
2
3int main(int argc, const char * argv[])
4{
5 int * Var = malloc (sizeof(int));
6 *Var = 0;
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_To_Scalars
MD5: f22d7b6f8170587009b0f6bb1299c0a0

In Ada, an initializer can be specified with the allocation by appending
'(value):

[Ada]

main.adb

1procedure Main is
2 type A_Int is access Integer;
3
4 Var : A_Int := new Integer'(0);
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_Initialization
MD5: 5789253068f77100eec34919b8de66ec

When using Ada pointers to reference objects on the stack, the referenced
objects must be declared as being aliased. This directs the compiler to
implement the object using a memory region, rather than using registers or
eliminating it entirely via optimization. The access type needs to be declared
as either access all (if the referenced object needs to be assigned to)
or access constant (if the referenced object is a constant). The
'Access attribute works like the C & operator to get a pointer to
the object, but with a scope accessibility check to prevent references to
objects that have gone out of scope. For example:

[Ada]

main.adb

1procedure Main is
2 type A_Int is access all Integer;
3 Var : aliased Integer;
4 Ptr : A_Int := Var'Access;
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_All
MD5: 520df34083e3517876e10710530380be

[C]

main.c

1int main(int argc, const char * argv[])
2{
3 int Var;
4 int * Ptr = &Var;
5
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_All_C
MD5: a592fcf09dabe15f2aaf12fba047d74f

To deallocate objects from the heap in Ada, it is necessary to use a
deallocation subprogram that accepts a specific access type. A generic
procedure is provided that can be customized to fit your needs, it's called
Ada.Unchecked_Deallocation. To create your customized deallocator (that
is, to instantiate this generic), you must provide the object type as well as
the access type as follows:

[Ada]

main.adb

1with Ada.Unchecked_Deallocation;
2
3procedure Main is
4 type Integer_Access is access all Integer;
5 procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access);
6 My_Pointer : Integer_Access := new Integer;
7begin
8 Free (My_Pointer);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unchecked_Deallocation
MD5: ef6ee170fea1f6c6c01037a09809916f

[C]

main.c

1#include <stdlib.h>
2
3int main(int argc, const char * argv[])
4{
5 int * my_pointer = malloc (sizeof(int));
6 free (my_pointer);
7
8 return 0;
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Free
MD5: 066046816dd1c4f9106b5e822cfe5e44

We'll discuss generics later in this section.

Functions and Procedures

General Form

Subroutines in C are always expressed as functions which may or may not return a
value. Ada explicitly differentiates between functions and procedures.
Functions must return a value and procedures must not. Ada uses the more
general term subprogram to refer to both functions and procedures.

Parameters can be passed in three distinct modes:

	in, which is the default, is for input parameters, whose value is
provided by the caller and cannot be changed by the subprogram.

	out is for output parameters, with no initial value, to be assigned by
the subprogram and returned to the caller.

	in out is a parameter with an initial value provided by the caller,
which can be modified by the subprogram and returned to the caller (more or
less the equivalent of a non-constant pointer in C).

Ada also provides access and aliased parameters, which are in
effect explicit pass-by-reference indicators.

In Ada, the programmer specifies how the parameter will be used and in general
the compiler decides how it will be passed (i.e., by copy or by reference). C
has the programmer specify how to pass the parameter.

Important

There are some exceptions to the "general" rule in Ada. For example,
parameters of scalar types are always passed by copy, for all three modes.

Here's a first example:

[Ada]

proc.ads

1procedure Proc
2 (Var1 : Integer;
3 Var2 : out Integer;
4 Var3 : in out Integer);

func.ads

1function Func (Var : Integer) return Integer;

proc.adb

 1with Func;
 2
 3procedure Proc
 4 (Var1 : Integer;
 5 Var2 : out Integer;
 6 Var3 : in out Integer)
 7is
 8begin
 9 Var2 := Func (Var1);
10 Var3 := Var3 + 1;
11end Proc;

func.adb

1function Func (Var : Integer) return Integer
2is
3begin
4 return Var + 1;
5end Func;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Proc;
 3
 4procedure Main is
 5 V1, V2 : Integer;
 6begin
 7 V2 := 2;
 8 Proc (5, V1, V2);
 9
10 Put_Line ("V1: " & Integer'Image (V1));
11 Put_Line ("V2: " & Integer'Image (V2));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Subroutines_Ada
MD5: a35fb6ae1b37325c3f39b3316e4246a8

Runtime output

V1: 6
V2: 3

[C]

proc.h

1void Proc
2 (int Var1,
3 int * Var2,
4 int * Var3);

func.h

1int Func (int Var);

proc.c

 1#include "func.h"
 2
 3void Proc
 4 (int Var1,
 5 int * Var2,
 6 int * Var3)
 7{
 8 *Var2 = Func (Var1);
 9 *Var3 += 1;
10}

func.c

1int Func (int Var)
2{
3 return Var + 1;
4}

main.c

 1#include <stdio.h>
 2#include "proc.h"
 3
 4int main(int argc, const char * argv[])
 5{
 6 int v1, v2;
 7
 8 v2 = 2;
 9 Proc (5, &v1, &v2);
10
11 printf("v1: %d\n", v1);
12 printf("v2: %d\n", v2);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Subroutines_C
MD5: dd5645c832ef00b94061f204852084a3

Runtime output

v1: 6
v2: 3

The first two declarations for Proc and Func are specifications
of the subprograms which are being provided later. Although optional here, it's
still considered good practice to separately define specifications and
implementations in order to make it easier to read the program. In Ada and C, a
function that has not yet been seen cannot be used. Here, Proc can call
Func because its specification has been declared.

Parameters in Ada subprogram declarations are separated with semicolons,
because commas are reserved for listing multiple parameters of the same type.
Parameter declaration syntax is the same as variable declaration syntax (except
for the modes), including default values for parameters. If there are no
parameters, the parentheses must be omitted entirely from both the declaration
and invocation of the subprogram.

In Ada 202X

Ada 202X allows for using static expression functions, which are evaluated
at compile time. To achieve this, we can use an aspect — we'll
discuss aspects later in this chapter.

An expression function is static when the Static
aspect is specified. For example:

procedure Main is

 X1 : constant := (if True then 37 else 42);

 function If_Then_Else (Flag : Boolean; X, Y : Integer)
 return Integer is
 (if Flag then X else Y) with Static;

 X2 : constant := If_Then_Else (True, 37, 42);

begin
 null;
end Main;

In this example, we declare X1 using an expression. In the
declaration of X2, we call the static expression function
If_Then_Else. Both X1 and X2 have the same constant
value.

Overloading

In C, function names must be unique. Ada allows overloading, in which multiple
subprograms can share the same name as long as the subprogram signatures
(the parameter types, and function return types) are different. The compiler
will be able to resolve the calls to the proper routines or it will reject the
calls. For example:

[Ada]

machine.ads

1package Machine is
2 type Status is (Off, On);
3 type Code is new Integer range 0 .. 3;
4 type Threshold is new Float range 0.0 .. 10.0;
5
6 function Get (S : Status) return Code;
7 function Get (S : Status) return Threshold;
8
9end Machine;

machine.adb

 1package body Machine is
 2
 3 function Get (S : Status) return Code is
 4 begin
 5 case S is
 6 when Off => return 1;
 7 when On => return 3;
 8 end case;
 9 end Get;
10
11 function Get (S : Status) return Threshold is
12 begin
13 case S is
14 when Off => return 2.0;
15 when On => return 10.0;
16 end case;
17 end Get;
18
19end Machine;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine; use Machine;
 3
 4procedure Main is
 5 S : Status;
 6 C : Code;
 7 T : Threshold;
 8begin
 9 S := On;
10 C := Get (S);
11 T := Get (S);
12
13 Put_Line ("S: " & Status'Image (S));
14 Put_Line ("C: " & Code'Image (C));
15 Put_Line ("T: " & Threshold'Image (T));
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overloading_Ada
MD5: 909cdf00b629917f7131489702cc26f1

Runtime output

S: ON
C: 3
T: 1.00000E+01

The Ada compiler knows that an assignment to C requires a
Code value. So, it chooses the Get function that returns a
Code to satisfy this requirement.

Operators in Ada are functions too. This allows you to define
local operators that override operators defined at an outer scope, and provide
overloaded operators that operate on and compare different types. To declare an
operator as a function, enclose its "name" in quotes:

[Ada]

machine_2.ads

1package Machine_2 is
2 type Status is (Off, Waiting, On);
3 type Input is new Float range 0.0 .. 10.0;
4
5 function Get (I : Input) return Status;
6
7 function "=" (Left : Input; Right : Status) return Boolean;
8
9end Machine_2;

machine_2.adb

 1package body Machine_2 is
 2
 3 function Get (I : Input) return Status is
 4 begin
 5 if I >= 0.0 and I < 3.0 then
 6 return Off;
 7 elsif I >= 3.0 and I < 6.5 then
 8 return Waiting;
 9 else
10 return On;
11 end if;
12 end Get;
13
14 function "=" (Left : Input; Right : Status) return Boolean is
15 begin
16 return Get (Left) = Right;
17 end "=";
18
19end Machine_2;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_2; use Machine_2;
 3
 4procedure Main is
 5 I : Input;
 6begin
 7 I := 3.0;
 8 if I = Off then
 9 Put_Line ("Machine is off.");
10 else
11 Put_Line ("Machine is not off.");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overloading_Eq
MD5: c5580f15c1b93f73fff3afc147cd15a1

Runtime output

Machine is not off.

Aspects

Aspect specifications allow you to define certain characteristics of a
declaration using the with keyword after the declaration:

procedure Some_Procedure is <procedure_definition>
 with Some_Aspect => <aspect_specification>;

function Some_Function is <function_definition>
 with Some_Aspect => <aspect_specification>;

type Some_Type is <type_definition>
 with Some_Aspect => <aspect_specification>;

Obj : Some_Type with Some_Aspect => <aspect_specification>;

For example, you can inline a subprogram by specifying the Inline
aspect:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float
6 with Inline;
7
8end Float_Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Inline_Aspect
MD5: 6e25e81e4015d907d50aa9cf4a0a3fab

We'll discuss inlining later in this course.

Aspect specifications were introduced in Ada 2012. In previous versions of Ada,
you had to use a pragma instead. The previous example would be written
as follows:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float;
6
7 pragma Inline (Average);
8
9end Float_Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Inline_Aspect
MD5: bd5df14dce9577a054f0ec612d5bbe40

Aspects and attributes might refer to the same kind of information. For
example, we can use the Size aspect to define the expected minimum size
of objects of a certain type:

[Ada]

my_device_types.ads

1package My_Device_Types is
2
3 type UInt10 is mod 2 ** 10
4 with Size => 10;
5
6end My_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 049be992b876dba42cf091afc256db35

In the same way, we can use the size attribute to retrieve the size of a type
or of an object:

[Ada]

show_device_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with My_Device_Types; use My_Device_Types;
 4
 5procedure Show_Device_Types is
 6 UInt10_Obj : constant UInt10 := 0;
 7begin
 8 Put_Line ("Size of UInt10 type: " & Positive'Image (UInt10'Size));
 9 Put_Line ("Size of UInt10 object: " & Positive'Image (UInt10_Obj'Size));
10end Show_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 4e46ad9cf54276b381b960672daa03b9

Runtime output

Size of UInt10 type: 10
Size of UInt10 object: 16

We'll explain both Size aspect and Size attribute
later in this course.

Footnotes

[#1]
https://www.adacore.com/gnatpro

[#2]
https://www.adacore.com/community

[#3]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx.html

[#4]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx.html

[#5]
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/bareboard_topics.html

[#6]
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/customized_run-time_libraries.html

Concurrency and Real-Time

Understanding the various options

Concurrent and real-time programming are standard parts of the Ada
language. As such, they have the same semantics, whether executing on a
native target with an OS such as Linux, on a real-time operating system
(RTOS) such as VxWorks, or on a bare metal target with no OS or RTOS at
all.

For resource-constrained systems, two subsets of the Ada concurrency
facilities are defined, known as the Ravenscar and Jorvik profiles.
Though restricted, these subsets have highly desirable properties,
including: efficiency, predictability, analyzability, absence of
deadlock, bounded blocking, absence of priority inversion, a real-time
scheduler, and a small memory footprint. On bare metal systems, this
means in effect that Ada comes with its own real-time kernel.

For further information

We'll discuss the Ravenscar profile
later in this chapter. Details about the Jorvik profile
can be found elsewhere [Jorvik].

[Jorvik]
A New Ravenscar-Based Profile by P. Rogers, J. Ruiz, T. Gingold
and P. Bernardi, in Reliable Software Technologies — Ada
Europe 2017, Springer-Verlag Lecture Notes in Computer Science,
Number 10300.

Enhanced portability and expressive power are the primary advantages of
using the standard concurrency facilities, potentially resulting in
considerable cost savings. For example, with little effort, it is
possible to migrate from Windows to Linux to a bare machine without
requiring any changes to the code. Thread management and synchronization
is all done by the implementation, transparently. However, in some
situations, it’s critical to be able to access directly the services
provided by the platform. In this case, it’s always possible to make
direct system calls from Ada code. Several targets of the GNAT compiler
provide this sort of API by default, for example win32ada for Windows
and Florist for POSIX systems.

On native and RTOS-based platforms GNAT typically provides the full
concurrency facilities. In contrast, on bare metal platforms GNAT typically
provides the two standard subsets: Ravenscar and Jorvik.

Tasks

Ada offers a high level construct called a task which is an
independent thread of execution. In GNAT, tasks are either mapped to the
underlying OS threads, or use a dedicated kernel when not available.

The following example will display the 26 letters of the alphabet twice, using
two concurrent tasks. Since there is no synchronization between the two threads
of control in any of the examples, the output may be interspersed.

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is -- implicitly called by the environment task
 4 subtype A_To_Z is Character range 'A' .. 'Z';
 5
 6 task My_Task;
 7
 8 task body My_Task is
 9 begin
10 for I in A_To_Z'Range loop
11 Put (I);
12 end loop;
13 New_Line;
14 end My_Task;
15begin
16 for I in A_To_Z'Range loop
17 Put (I);
18 end loop;
19 New_Line;
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task
MD5: 154702197f0c02f5750838e51a99f548

Runtime output

ABABCDEFGHIJKLMNOPQRSTUVWXYZ
CDEFGHIJKLMNOPQRSTUVWXYZ

Any number of Ada tasks may be declared in any declarative region. A task
declaration is very similar to a procedure or package declaration. They all
start automatically when control reaches the begin. A block will not exit until
all sequences of statements defined within that scope, including those in
tasks, have been completed.

A task type is a generalization of a task object; each object of a task type
has the same behavior. A declared object of a task type is started within the
scope where it is declared, and control does not leave that scope until the
task has terminated.

Task types can be parameterized; the parameter serves the same purpose as an
argument to a constructor in Java. The following example creates 10 tasks, each
of which displays a subset of the alphabet contained between the parameter and
the 'Z' Character. As with the earlier example, since there is no
synchronization among the tasks, the output may be interspersed depending on
the underlying implementation of the task scheduling algorithm.

[Ada]

my_tasks.ads

1package My_Tasks is
2
3 task type My_Task (First : Character);
4
5end My_Tasks;

my_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Tasks is
 4
 5 task body My_Task is
 6 begin
 7 for I in First .. 'Z' loop
 8 Put (I);
 9 end loop;
10 New_Line;
11 end My_Task;
12
13end My_Tasks;

main.adb

1with My_Tasks; use My_Tasks;
2
3procedure Main is
4 Dummy_Tab : array (0 .. 3) of My_Task ('W');
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task_Type
MD5: 81d88397b0548fdcc1ba31549a8de4fd

Runtime output

WXYZ
WXYZ
WXYZ
WXYZ

In Ada, a task may be dynamically allocated rather than declared
statically. The task will then start as soon as it has been allocated,
and terminates when its work is completed.

[Ada]

main.adb

1with My_Tasks; use My_Tasks;
2
3procedure Main is
4 type Ptr_Task is access My_Task;
5
6 T : Ptr_Task;
7begin
8 T := new My_Task ('W');
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task_Type
MD5: d88a96eecf50ebbcdfe9cb870f232a09

Runtime output

WXYZ

Rendezvous

A rendezvous is a synchronization between two tasks, allowing them to exchange
data and coordinate execution. Let's consider the following example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 task After is
 6 entry Go;
 7 end After;
 8
 9 task body After is
10 begin
11 accept Go;
12 Put_Line ("After");
13 end After;
14
15begin
16 Put_Line ("Before");
17 After.Go;
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Rendezvous
MD5: b0a595b1eecac793e40b6d1d41171766

Runtime output

Before
After

The Go entry declared in After is the client interface to the
task. In the task body, the accept statement causes the task to wait for
a call on the entry. This particular entry and accept pair
simply causes the task to wait until Main calls
After.Go. So, even though the two tasks start simultaneously and execute
independently, they can coordinate via Go. Then, they both continue
execution independently after the rendezvous.

The entry/accept pair can take/pass parameters, and the
accept statement can contain a sequence of statements; while these
statements are executed, the caller is blocked.

Let's look at a more ambitious example. The rendezvous below accepts parameters
and executes some code:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 task After is
 6 entry Go (Text : String);
 7 end After;
 8
 9 task body After is
10 begin
11 accept Go (Text : String) do
12 Put_Line ("After: " & Text);
13 end Go;
14 end After;
15
16begin
17 Put_Line ("Before");
18 After.Go ("Main");
19end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Rendezvous_Params
MD5: 6430e88f5ae349128bb1f1d53f36251e

Runtime output

Before
After: Main

In the above example, the Put_Line is placed in the accept statement.
Here's a possible execution trace, assuming a uniprocessor:

	At the begin of Main, task After is started and the main
procedure is suspended.

	After reaches the accept statement and is suspended, since
there is no pending call on the Go entry.

	The main procedure is awakened and executes the Put_Line invocation,
displaying the string "Before".

	The main procedure calls the Go entry. Since After is
suspended on its accept statement for this entry, the call succeeds.

	The main procedure is suspended, and the task After is awakened to
execute the body of the accept statement. The actual parameter
"Main" is passed to the accept statement, and the
Put_Line invocation is executed. As a result, the string
"After: Main" is displayed.

	When the accept statement is completed, both the After task
and the main procedure are ready to run. Suppose that the Main
procedure is given the processor. It reaches its end, but the local task
After has not yet terminated. The main procedure is suspended.

	The After task continues, and terminates since it is at its end. The
main procedure is resumed, and it too can terminate since its dependent task
has terminated.

The above description is a conceptual model; in practice the implementation can
perform various optimizations to avoid unnecessary context switches.

Selective Rendezvous

The accept statement by itself can only wait for a single event (call)
at a time. The select statement allows a task to listen for multiple
events simultaneously, and then to deal with the first event to occur. This
feature is illustrated by the task below, which maintains an integer value that
is modified by other tasks that call Increment, Decrement, and
Get:

[Ada]

counters.ads

1package Counters is
2
3 task Counter is
4 entry Get (Result : out Integer);
5 entry Increment;
6 entry Decrement;
7 end Counter;
8
9end Counters;

counters.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Counters is
 4
 5 task body Counter is
 6 Value : Integer := 0;
 7 begin
 8 loop
 9 select
10 accept Increment do
11 Value := Value + 1;
12 end Increment;
13 or
14 accept Decrement do
15 Value := Value - 1;
16 end Decrement;
17 or
18 accept Get (Result : out Integer) do
19 Result := Value;
20 end Get;
21 or
22 delay 5.0;
23 Put_Line ("Exiting Counter task...");
24 exit;
25 end select;
26 end loop;
27 end Counter;
28
29end Counters;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Counters; use Counters;
 3
 4procedure Main is
 5 V : Integer;
 6begin
 7 Put_Line ("Main started.");
 8
 9 Counter.Get (V);
10 Put_Line ("Got value. Value = " & Integer'Image (V));
11
12 Counter.Increment;
13 Put_Line ("Incremented value.");
14
15 Counter.Increment;
16 Put_Line ("Incremented value.");
17
18 Counter.Get (V);
19 Put_Line ("Got value. Value = " & Integer'Image (V));
20
21 Counter.Decrement;
22 Put_Line ("Decremented value.");
23
24 Counter.Get (V);
25 Put_Line ("Got value. Value = " & Integer'Image (V));
26
27 Put_Line ("Main finished.");
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Selective_Rendezvous
MD5: 619d009bcfcd8053bc132b2e32a29249

Runtime output

Main started.
Got value. Value = 0
Incremented value.
Incremented value.
Got value. Value = 2
Decremented value.
Got value. Value = 1
Main finished.
Exiting Counter task...

When the task's statement flow reaches the select, it will wait for all four
events — three entries and a delay — in parallel. If the delay of
five seconds is exceeded, the task will execute the statements following the
delay statement (and in this case will exit the loop, in effect
terminating the task). The accept bodies for the Increment,
Decrement, or Get entries will be otherwise executed as they're
called. These four sections of the select statement are mutually exclusive: at
each iteration of the loop, only one will be invoked. This is a critical point;
if the task had been written as a package, with procedures for the various
operations, then a race condition could occur where multiple tasks
simultaneously calling, say, Increment, cause the value to only get
incremented once. In the tasking version, if multiple tasks simultaneously call
Increment then only one at a time will be accepted, and the value will
be incremented by each of the tasks when it is accepted.

More specifically, each entry has an associated queue of pending callers. If a
task calls one of the entries and Counter is not ready to accept the call
(i.e., if Counter is not suspended at the select statement) then
the calling task is suspended, and placed in the queue of the entry that it is
calling. From the perspective of the Counter task, at any iteration of
the loop there are several possibilities:

	There is no call pending on any of the entries. In this case Counter
is suspended. It will be awakened by the first of two events: a call on one
of its entries (which will then be immediately accepted), or the expiration
of the five second delay (whose effect was noted above).

	There is a call pending on exactly one of the entries. In this case control
passes to the select branch with an accept statement for that
entry.

	There are calls pending on more than one entry. In this case one of the
entries with pending callers is chosen, and then one of the callers is chosen
to be de-queued. The choice of which caller to accept depends on
the queuing policy, which can be specified via a pragma defined in the
Real-Time Systems Annex of the Ada standard; the default is
First-In First-Out.

Protected Objects

Although the rendezvous may be used to implement mutually exclusive access to a
shared data object, an alternative (and generally preferable) style is through
a protected object, an efficiently implementable mechanism that makes the
effect more explicit. A protected object has a public interface (its protected
operations) for accessing and manipulating the object's components (its private
part). Mutual exclusion is enforced through a conceptual lock on the object,
and encapsulation ensures that the only external access to the components are
through the protected operations.

Two kinds of operations can be performed on such objects: read-write operations
by procedures or entries, and read-only operations by functions. The lock
mechanism is implemented so that it's possible to perform concurrent read
operations but not concurrent write or read/write operations.

Let's reimplement our earlier tasking example with a protected object called
Counter:

[Ada]

counters.ads

 1package Counters is
 2
 3 protected Counter is
 4 function Get return Integer;
 5 procedure Increment;
 6 procedure Decrement;
 7 private
 8 Value : Integer := 0;
 9 end Counter;
10
11end Counters;

counters.adb

 1package body Counters is
 2
 3 protected body Counter is
 4 function Get return Integer is
 5 begin
 6 return Value;
 7 end Get;
 8
 9 procedure Increment is
10 begin
11 Value := Value + 1;
12 end Increment;
13
14 procedure Decrement is
15 begin
16 Value := Value - 1;
17 end Decrement;
18 end Counter;
19
20end Counters;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Counter
MD5: f29f21621dfcf092580f6a130101788e

Having two completely different ways to implement the same paradigm might seem
complicated. However, in practice the actual problem to solve usually drives
the choice between an active structure (a task) or a passive structure (a
protected object).

A protected object can be accessed through prefix notation:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Counters; use Counters;
3
4procedure Main is
5begin
6 Counter.Increment;
7 Counter.Decrement;
8 Put_Line (Integer'Image (Counter.Get));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Counter
MD5: 704e3a382fe38caa11ecd3d46fcd2beb

Runtime output

 0

A protected object may look like a package syntactically, since it contains
declarations that can be accessed externally using prefix notation. However,
the declaration of a protected object is extremely restricted; for example, no
public data is allowed, no types can be declared inside, etc. And besides the
syntactic differences, there is a critical semantic distinction: a protected
object has a conceptual lock that guarantees mutual exclusion; there is no such
lock for a package.

Like tasks, it's possible to declare protected types that can be instantiated
several times:

declare
 protected type Counter is
 -- as above
 end Counter;

 protected body Counter is
 -- as above
 end Counter;

 C1 : Counter;
 C2 : Counter;
begin
 C1.Increment;
 C2.Decrement;
 .. .
end;

Protected objects and types can declare a procedure-like operation known as an
entry. An entry is somewhat similar to a procedure but includes a so-called
barrier condition that must be true in order for the entry invocation to
succeed. Calling a protected entry is thus a two step process: first, acquire
the lock on the object, and then evaluate the barrier condition. If the
condition is true then the caller will execute the entry body. If the
condition is false, then the caller is placed in the queue for the entry, and
relinquishes the lock. Barrier conditions (for entries with non-empty queues)
are reevaluated upon completion of protected procedures and protected entries.

Here's an example illustrating protected entries: a protected type that models
a binary semaphore / persistent signal.

[Ada]

binary_semaphores.ads

 1package Binary_Semaphores is
 2
 3 protected type Binary_Semaphore is
 4 entry Wait;
 5 procedure Signal;
 6 private
 7 Signaled : Boolean := False;
 8 end Binary_Semaphore;
 9
10end Binary_Semaphores;

binary_semaphores.adb

 1package body Binary_Semaphores is
 2
 3 protected body Binary_Semaphore is
 4 entry Wait when Signaled is
 5 begin
 6 Signaled := False;
 7 end Wait;
 8
 9 procedure Signal is
10 begin
11 Signaled := True;
12 end Signal;
13 end Binary_Semaphore;
14
15end Binary_Semaphores;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Binary_Semaphores; use Binary_Semaphores;
 3
 4procedure Main is
 5 B : Binary_Semaphore;
 6
 7 task T1;
 8 task T2;
 9
10 task body T1 is
11 begin
12 Put_Line ("Task T1 waiting...");
13 B.Wait;
14
15 Put_Line ("Task T1.");
16 delay 1.0;
17
18 Put_Line ("Task T1 will signal...");
19 B.Signal;
20
21 Put_Line ("Task T1 finished.");
22 end T1;
23
24 task body T2 is
25 begin
26 Put_Line ("Task T2 waiting...");
27 B.Wait;
28
29 Put_Line ("Task T2");
30 delay 1.0;
31
32 Put_Line ("Task T2 will signal...");
33 B.Signal;
34
35 Put_Line ("Task T2 finished.");
36 end T2;
37
38begin
39 Put_Line ("Main started.");
40 B.Signal;
41 Put_Line ("Main finished.");
42end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Binary_Semaphore
MD5: aa064a9ec056d44c4217e64cd05726a4

Runtime output

Task T2 waiting...
Task T1 waiting...
Main started.
Main finished.
Task T2
Task T2 will signal...
Task T2 finished.
Task T1.
Task T1 will signal...
Task T1 finished.

Ada concurrency features provide much further generality than what's been
presented here. For additional information please consult one of the works
cited in the References section.

Ravenscar

The Ravenscar profile is a subset of the Ada concurrency facilities that
supports determinism, schedulability analysis, constrained memory utilization,
and certification to the highest integrity levels. Four distinct application
domains are intended:

	hard real-time applications requiring predictability,

	safety-critical systems requiring formal, stringent certification,

	high-integrity applications requiring formal static analysis and
verification,

	embedded applications requiring both a small memory footprint and low
execution overhead.

Tasking constructs that preclude analysis, either technically or economically,
are disallowed. You can use the pragma Profile (Ravenscar) to indicate
that the Ravenscar restrictions must be observed in your program.

Some of the examples we've seen above will be rejected by the compiler when
using the Ravenscar profile. For example:

[Ada]

my_tasks.ads

1package My_Tasks is
2
3 task type My_Task (First : Character);
4
5end My_Tasks;

my_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Tasks is
 4
 5 task body My_Task is
 6 begin
 7 for C in First .. 'Z' loop
 8 Put (C);
 9 end loop;
10 New_Line;
11 end My_Task;
12
13end My_Tasks;

main.adb

1pragma Profile (Ravenscar);
2
3with My_Tasks; use My_Tasks;
4
5procedure Main is
6 Tab : array (0 .. 3) of My_Task ('W');
7begin
8 null;
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Ravenscar
MD5: b7518a039c2b4cecece1de63eeaa208f

Build output

main.adb:6:04: error: violation of restriction "No_Task_Hierarchy"
main.adb:6:04: error: from profile "Ravenscar" at line 1
gprbuild: *** compilation phase failed

This code violates the No_Task_Hierarchy restriction of the Ravenscar
profile. This is due to the declaration of Tab in the Main
procedure. Ravenscar requires task declarations to be done at the library level.
Therefore, a simple solution is to create a separate package and reference it
in the main application:

[Ada]

my_task_inst.ads

1with My_Tasks; use My_Tasks;
2
3package My_Task_Inst is
4
5 Tab : array (0 .. 3) of My_Task ('W');
6
7end My_Task_Inst;

main.adb

1pragma Profile (Ravenscar);
2
3with My_Task_Inst;
4
5procedure Main is
6begin
7 null;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Ravenscar
MD5: b38943dc1c962b5e691f2b6d9933a3ec

Runtime output

WXYZ
WXYZ
WXYZ
WXYZ

Also, Ravenscar prohibits entries for tasks. For example, we're not allowed to
write this declaration:

task type My_Task (First : Character) is
 entry Start;
end My_Task;

You can use, however, one entry per protected object. As an example, the
declaration of the Binary_Semaphore type that we've discussed before
compiles fine with Ravenscar:

protected type Binary_Semaphore is
 entry Wait;
 procedure Signal;
private
 Signaled : Boolean := False;
end Binary_Semaphore;

We could add more procedures and functions to the declaration of
Binary_Semaphore, but we wouldn't be able to add another entry when
using Ravenscar.

Similar to the previous example with the task array declaration, objects of
Binary_Semaphore cannot be declared in the main application:

procedure Main is
 B : Binary_Semaphore;
begin
 null;
end Main;

This violates the No_Local_Protected_Objects restriction. Again, Ravenscar
expects this declaration to be done on a library level, so a solution to make
this code compile is to have this declaration in a separate package and
reference it in the Main procedure.

Ravenscar offers many additional restrictions. Covering those would exceed
the scope of this chapter. You can find more examples using the Ravenscar
profile on
this blog post[#1].

Footnotes

[#1]
https://blog.adacore.com/theres-a-mini-rtos-in-my-language

Writing Ada on Embedded Systems

Understanding the Ada Run-Time

Ada supports a high level of abstractness and expressiveness. In some cases,
the compiler translates those constructs directly into machine code. However,
there are many high-level constructs for which a direct compilation would be
difficult. In those cases, the compiler links to a library containing an
implementation of those high-level constructs: this is the so-called run-time
library.

One typical example of high-level constructs that can be cumbersome for direct
machine code generation is Ada source-code using tasking. In this case, linking
to a low-level implementation of multithreading support — for example, an
implementation using POSIX threads — is more straightforward than trying
to make the compiler generate all the machine code.

In the case of GNAT, the run-time library is implemented using both C and Ada
source-code. Also, depending on the operating system, the library will
interface with low-level functionality from the target operating system.

There are basically two types of run-time libraries:

	the standard run-time library: in many cases, this is the run-time
library available on desktop operating systems or on some embedded
platforms (such as ARM-Linux on a Raspberry-Pi).

	the configurable run-time library: this is a capability that is used to
create custom run-time libraries for specific target devices.

Configurable run-time libraries are usually used for constrained target
devices where support for the full library would be difficult or even
impossible. In this case, configurable run-time libraries may support just a
subset of the full Ada language. There are many reasons that speak for this
approach:

	Some aspects of the Ada language may not translate well to limited operating
systems.

	Memory constraints may require reducing the size of the run-time library, so
that developers may need to replace or even remove parts of the library.

	When certification is required, those parts of the library that would require
too much certification effort can be removed.

When using a configurable run-time library, the compiler checks whether the
library supports certain features of the language. If a feature isn't
supported, the compiler will give an error message.

You can find further information about the run-time library on
this chapter of the GNAT User's Guide Supplement for Cross Platforms[#1]

Low Level Programming

Representation Clauses

We've seen in the previous chapters how Ada can be used to describe high level
semantics and architecture. The beauty of the language, however, is that it can
be used all the way down to the lowest levels of the development, including
embedded assembly code or bit-level data management.

One very interesting feature of the language is that, unlike C, for example,
there are no data representation constraints unless specified by the developer.
This means that the compiler is free to choose the best trade-off in terms of
representation vs. performance. Let's start with the following example:

[Ada]

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record
 with Pack;

[C]

struct R {
 unsigned int v:8;
 bool b1;
 bool b2;
};

The Ada and the C code above both represent efforts to create an object
that's as small as possible. Controlling data size is not possible in Java, but
the language does specify the size of values for the primitive types.

Although the C and Ada code are equivalent in this particular example,
there's an interesting semantic difference. In C, the number of bits required
by each field needs to be specified. Here, we're stating that v is only
8 bits, effectively representing values from 0 to 255. In Ada, it's the other
way around: the developer specifies the range of values required and the
compiler decides how to represent things, optimizing for speed or size. The
Pack aspect declared at the end of the record specifies that the
compiler should optimize for size even at the expense of decreased speed in
accessing record components. We'll see more details about the Pack
aspect in the sections about bitwise operations and
mapping structures to bit-fields in
chapter 6.

Other representation clauses can be specified as well, along with compile-time
consistency checks between requirements in terms of available values and
specified sizes. This is particularly useful when a specific layout is
necessary; for example when interfacing with hardware, a driver, or a
communication protocol. Here's how to specify a specific data layout based on
the previous example:

[Ada]

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record;

for R use record
 -- Occupy the first bit of the first byte.
 B1 at 0 range 0 .. 0;

 -- Occupy the last 7 bits of the first byte,
 -- as well as the first bit of the second byte.
 V at 0 range 1 .. 8;

 -- Occupy the second bit of the second byte.
 B2 at 1 range 1 .. 1;
end record;

We omit the with Pack directive and instead use a record representation
clause following the record declaration. The compiler is directed to spread
objects of type R across two bytes. The layout we're specifying here is
fairly inefficient to work with on any machine, but you can have the compiler
construct the most efficient methods for access, rather than coding your own
machine-dependent bit-level methods manually.

Embedded Assembly Code

When performing low-level development, such as at the kernel or hardware driver
level, there can be times when it is necessary to implement functionality with
assembly code.

Every Ada compiler has its own conventions for embedding assembly code, based
on the hardware platform and the supported assembler(s). Our examples here will
work with GNAT and GCC on the x86 architecture.

All x86 processors since the Intel Pentium offer the rdtsc instruction,
which tells us the number of cycles since the last processor reset. It takes no
inputs and places an unsigned 64-bit value split between the edx and
eax registers.

GNAT provides a subprogram called System.Machine_Code.Asm that can be
used for assembly code insertion. You can specify a string to pass to the
assembler as well as source-level variables to be used for input and output:

[Ada]

get_processor_cycles.adb

 1with System.Machine_Code; use System.Machine_Code;
 2with Interfaces; use Interfaces;
 3
 4function Get_Processor_Cycles return Unsigned_64 is
 5 Low, High : Unsigned_32;
 6 Counter : Unsigned_64;
 7begin
 8 Asm ("rdtsc",
 9 Outputs =>
10 (Unsigned_32'Asm_Output ("=a", High),
11 Unsigned_32'Asm_Output ("=d", Low)),
12 Volatile => True);
13
14 Counter :=
15 Unsigned_64 (High) * 2 ** 32 +
16 Unsigned_64 (Low);
17
18 return Counter;
19end Get_Processor_Cycles;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Assembly_Code
MD5: 092be19e223946ebb9fb9f4786003b94

The Unsigned_32'Asm_Output clauses above provide associations between
machine registers and source-level variables to be updated. =a and
=d refer to the eax and edx machine registers, respectively. The
use of the Unsigned_32 and Unsigned_64 types from package
Interfaces ensures correct representation of the data. We assemble the
two 32-bit values to form a single 64-bit value.

We set the Volatile parameter to True to tell the compiler that
invoking this instruction multiple times with the same inputs can result in
different outputs. This eliminates the possibility that the compiler will
optimize multiple invocations into a single call.

With optimization turned on, the GNAT compiler is smart enough to use the
eax and edx registers to implement the High and Low
variables, resulting in zero overhead for the assembly interface.

The machine code insertion interface provides many features beyond what was
shown here. More information can be found in the GNAT User's Guide, and the
GNAT Reference manual.

Interrupt Handling

Handling interrupts is an important aspect when programming embedded devices.
Interrupts are used, for example, to indicate that a hardware or software
event has happened. Therefore, by handling interrupts, an application can react
to external events.

Ada provides built-in support for handling interrupts. We can process
interrupts by attaching a handler — which must be a protected procedure
— to it. In the declaration of the protected procedure, we use the
Attach_Handler aspect and indicate which interrupt we want to handle.

Let's look into a code example that traps the quit interrupt (SIGQUIT)
on Linux:

[Ada]

signal_handlers.ads

 1with System.OS_Interface;
 2
 3package Signal_Handlers is
 4
 5 protected type Quit_Handler is
 6 function Requested return Boolean;
 7 private
 8 Quit_Request : Boolean := False;
 9
10 --
11 -- Declaration of an interrupt handler for the "quit" interrupt:
12 --
13 procedure Handle_Quit_Signal
14 with Attach_Handler => System.OS_Interface.SIGQUIT;
15 end Quit_Handler;
16
17end Signal_Handlers;

signal_handlers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Signal_Handlers is
 4
 5 protected body Quit_Handler is
 6
 7 function Requested return Boolean is
 8 (Quit_Request);
 9
10 procedure Handle_Quit_Signal is
11 begin
12 Put_Line ("Quit request detected!");
13 Quit_Request := True;
14 end Handle_Quit_Signal;
15
16 end Quit_Handler;
17
18end Signal_Handlers;

test_quit_handler.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Signal_Handlers;
 3
 4procedure Test_Quit_Handler is
 5 Quit : Signal_Handlers.Quit_Handler;
 6
 7begin
 8 while True loop
 9 delay 1.0;
10 exit when Quit.Requested;
11 end loop;
12
13 Put_Line ("Exiting application...");
14end Test_Quit_Handler;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Quit_Handler
MD5: d272c5bc59576444e09007a04a615ccf

The specification of the Signal_Handlers package from this example
contains the declaration of Quit_Handler, which is a protected type.
In the private part of this protected type, we declare the
Handle_Quit_Signal procedure. By using the Attach_Handler
aspect in the declaration of Handle_Quit_Signal and indicating the
quit interrupt (System.OS_Interface.SIGQUIT), we're instructing the
operating system to call this procedure for any quit request. So when the user
presses CTRL+\ on their keyboard, for example, the application will behave
as follows:

	the operating system calls the Handle_Quit_Signal procedure , which
displays a message to the user ("Quit request detected!") and sets a Boolean
variable — Quit_Request, which is declared in the
Quit_Handler type;

	the main application checks the status of the quit handler by calling the
Requested function as part of the while True loop;

	This call is in the exit when Quit.Requested line.

	The Requested function returns True in this case because
the Quit_Request flag was set by the Handle_Quit_Signal
procedure.

	the main applications exits the loop, displays a message and finishes.

Note that the code example above isn't portable because it makes use of
interrupts from the Linux operating system. When programming embedded devices,
we would use instead the interrupts available on those specific devices.

Also note that, in the example above, we're declaring a static handler at
compilation time. If you need to make use of dynamic handlers, which can be
configured at runtime, you can use the subprograms from the
Ada.Interrupts package. This package includes not only a version of
Attach_Handler as a procedure, but also other procedures such as:

	Exchange_Handler, which lets us exchange, at runtime, the current
handler associated with a specific interrupt by a different handler;

	Detach_Handler, which we can use to remove the handler currently
associated with a given interrupt.

Details about the Ada.Interrupts package are out of scope for this
course. We'll discuss them in a separate, more advanced course in the future.
You can find some information about it in the
Interrupts appendix of the Ada Reference Manual[#2].

Dealing with Absence of FPU with Fixed Point

Many numerical applications typically use floating-point types to compute
values. However, in some platforms, a floating-point unit may not be available.
Other platforms may have a floating-point unit, but using it in certain
numerical algorithms can be prohibitive in terms of performance. For those
cases, fixed-point arithmetic can be a good alternative.

The difference between fixed-point and floating-point types might not be so
obvious when looking at this code snippet:

[Ada]

fixed_definitions.ads

1package Fixed_Definitions is
2
3 D : constant := 2.0 ** (-31);
4
5 type Fixed is delta D range -1.0 .. 1.0 - D;
6
7end Fixed_Definitions;

show_float_and_fixed_point.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Fixed_Definitions; use Fixed_Definitions;
 4
 5procedure Show_Float_And_Fixed_Point is
 6 Float_Value : Float := 0.25;
 7 Fixed_Value : Fixed := 0.25;
 8begin
 9
10 Float_Value := Float_Value + 0.25;
11 Fixed_Value := Fixed_Value + 0.25;
12
13 Put_Line ("Float_Value = " & Float'Image (Float_Value));
14 Put_Line ("Fixed_Value = " & Fixed'Image (Fixed_Value));
15end Show_Float_And_Fixed_Point;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point
MD5: 881817bb310304bc285f01454ab446f7

Runtime output

Float_Value = 5.00000E-01
Fixed_Value = 0.5000000000

In this example, the application will show the value 0.5 for both
Float_Value and Fixed_Value.

The major difference between floating-point and fixed-point types is in the way
the values are stored. Values of ordinary fixed-point types are, in effect,
scaled integers. The scaling used for ordinary fixed-point types is defined by
the type's small, which is derived from the specified delta and,
by default, is a power of two. Therefore, ordinary fixed-point types are
sometimes called binary fixed-point types. In that sense, ordinary fixed-point
types can be thought of being close to the actual representation on the
machine. In fact, ordinary fixed-point types make use of the available integer
shift instructions, for example.

Another difference between floating-point and fixed-point types is that Ada
doesn't provide standard fixed-point types — except for the
Duration type, which is used to represent an interval of time in
seconds. While the Ada standard specifies floating-point types such as
Float and Long_Float, we have to declare our own fixed-point
types. Note that, in the previous example, we have used a fixed-point type
named Fixed: this type isn't part of the standard, but must be declared
somewhere in the source-code of our application.

The syntax for an ordinary fixed-point type is

type <type_name> is delta <delta_value> range <lower_bound> .. <upper_bound>;

By default, the compiler will choose a scale factor, or small, that is a
power of 2 no greater than <delta_value>.

For example, we may define a normalized range between -1.0 and 1.0 as
following:

[Ada]

normalized_fixed_point_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Normalized_Fixed_Point_Type is
 4 D : constant := 2.0 ** (-31);
 5 type TQ31 is delta D range -1.0 .. 1.0 - D;
 6begin
 7 Put_Line ("TQ31 requires " & Integer'Image (TQ31'Size) & " bits");
 8 Put_Line ("The delta value of TQ31 is " & TQ31'Image (TQ31'Delta));
 9 Put_Line ("The minimum value of TQ31 is " & TQ31'Image (TQ31'First));
10 Put_Line ("The maximum value of TQ31 is " & TQ31'Image (TQ31'Last));
11end Normalized_Fixed_Point_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Normalized_Fixed_Point_Type
MD5: 2fe6e9f9bd20d2cfab959d1c0273280b

Runtime output

TQ31 requires 32 bits
The delta value of TQ31 is 0.0000000005
The minimum value of TQ31 is -1.0000000000
The maximum value of TQ31 is 0.9999999995

In this example, we are defining a 32-bit fixed-point data type for our
normalized range. When running the application, we notice that the upper
bound is close to one, but not exactly one. This is a typical effect of
fixed-point data types — you can find more details in this discussion
about the Q format[#3].
We may also rewrite this code with an exact type definition:

[Ada]

normalized_adapted_fixed_point_type.ads

1package Normalized_Adapted_Fixed_Point_Type is
2
3 type TQ31 is delta 2.0 ** (-31) range -1.0 .. 1.0 - 2.0 ** (-31);
4
5end Normalized_Adapted_Fixed_Point_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Normalized_Adapted_Fixed_Point_Type
MD5: abe5f4e029c7c3c7a069890882b17f50

We may also use any other range. For example:

[Ada]

custom_fixed_point_range.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics; use Ada.Numerics;
 3
 4procedure Custom_Fixed_Point_Range is
 5 type Inv_Trig is delta 2.0 ** (-15) * Pi range -Pi / 2.0 .. Pi / 2.0;
 6begin
 7 Put_Line ("Inv_Trig requires " & Integer'Image (Inv_Trig'Size)
 8 & " bits");
 9 Put_Line ("The delta value of Inv_Trig is "
10 & Inv_Trig'Image (Inv_Trig'Delta));
11 Put_Line ("The minimum value of Inv_Trig is "
12 & Inv_Trig'Image (Inv_Trig'First));
13 Put_Line ("The maximum value of Inv_Trig is "
14 & Inv_Trig'Image (Inv_Trig'Last));
15end Custom_Fixed_Point_Range;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Custom_Fixed_Point_Range
MD5: 0d9a4bc96191d1341bbb1c081555b613

Runtime output

Inv_Trig requires 16 bits
The delta value of Inv_Trig is 0.00006
The minimum value of Inv_Trig is -1.57080
The maximum value of Inv_Trig is 1.57080

In this example, we are defining a 16-bit type called Inv_Trig,
which has a range from -π/2 to π/2.

All standard operations are available for fixed-point types. For example:

[Ada]

fixed_point_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Fixed_Point_Op is
 4 type TQ31 is delta 2.0 ** (-31) range -1.0 .. 1.0 - 2.0 ** (-31);
 5
 6 A, B, R : TQ31;
 7begin
 8 A := 0.25;
 9 B := 0.50;
10 R := A + B;
11 Put_Line ("R is " & TQ31'Image (R));
12end Fixed_Point_Op;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point_Op
MD5: 78bafd93b25da898c00cc38c9d518e2a

Runtime output

R is 0.7500000000

As expected, R contains 0.75 after the addition of A and B.

In the case of C, since the language doesn't support fixed-point arithmetic, we
need to emulate it using integer types and custom operations via functions.
Let's look at this very rudimentary example:

[C]

main.c

 1#include <stdio.h>
 2#include <math.h>
 3
 4#define SHIFT_FACTOR 32
 5
 6#define TO_FIXED(x) ((int) ((x) * pow (2.0, SHIFT_FACTOR - 1)))
 7#define TO_FLOAT(x) ((float) ((double)(x) * (double)pow (2.0, -(SHIFT_FACTOR - 1))))
 8
 9typedef int fixed;
10
11fixed add (fixed a, fixed b)
12{
13 return a + b;
14}
15
16fixed mult (fixed a, fixed b)
17{
18 return (fixed)(((long)a * (long)b) >> (SHIFT_FACTOR - 1));
19}
20
21void display_fixed (fixed x)
22{
23 printf("value (integer) = %d\n", x);
24 printf("value (float) = %3.5f\n\n", TO_FLOAT (x));
25}
26
27int main(int argc, const char * argv[])
28{
29 int fixed_value = TO_FIXED(0.25);
30
31 printf("Original value\n");
32 display_fixed(fixed_value);
33
34 printf("... + 0.25\n");
35 fixed_value = add(fixed_value, TO_FIXED(0.25));
36 display_fixed(fixed_value);
37
38 printf("... * 0.5\n");
39 fixed_value = mult(fixed_value, TO_FIXED(0.5));
40 display_fixed(fixed_value);
41
42 return 0;
43}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point_C
MD5: 61016e8fc0dbc4d0eefd2c86915489e5

Runtime output

Original value
value (integer) = 536870912
value (float) = 0.25000

... + 0.25
value (integer) = 1073741824
value (float) = 0.50000

... * 0.5
value (integer) = 536870912
value (float) = 0.25000

Here, we declare the fixed-point type fixed based on int and two
operations for it: addition (via the add function) and multiplication
(via the mult function). Note that, while fixed-point addition is quite
straightforward, multiplication requires right-shifting to match the correct
internal representation. In Ada, since fixed-point operations are part of the
language specification, they don't need to be emulated. Therefore, no extra
effort is required from the programmer.

Also note that the example above is very rudimentary, so it doesn't take some
of the side-effects of fixed-point arithmetic into account. In C, you have to
manually take all side-effects deriving from fixed-point arithmetic into
account, while in Ada, the compiler takes care of selecting the right
operations for you.

Volatile and Atomic data

Ada has built-in support for handling both volatile and atomic data. Let's
start by discussing volatile objects.

Volatile

A volatile[#4]
object can be described as an object in memory whose value may change between
two consecutive memory accesses of a process A — even if process A itself
hasn't changed the value. This situation may arise when an object in memory is
being shared by multiple threads. For example, a thread B may modify the
value of that object between two read accesses of a thread A. Another typical
example is the one of
memory-mapped I/O[#5], where
the hardware might be constantly changing the value of an object in memory.

Because the value of a volatile object may be constantly changing, a compiler
cannot generate code that stores the value of that object into a register and
use the value from the register in subsequent operations. Storing into a
register is avoided because, if the value is stored there, it would be outdated
if another process had changed the volatile object in the meantime. Instead,
the compiler generates code in such a way that the process must read the value
of the volatile object from memory for each access.

Let's look at a simple example of a volatile variable in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 volatile double val = 0.0;
 6 int i;
 7
 8 for (i = 0; i < 1000; i++)
 9 {
10 val += i * 2.0;
11 }
12 printf ("val: %5.3f\n", val);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Object_C
MD5: 863c7dda4acb3286976a1edab29bab08

Runtime output

val: 999000.000

In this example, val has the modifier volatile, which indicates that
the compiler must handle val as a volatile object. Therefore, each read
and write access in the loop is performed by accessing the value of val in
then memory.

This is the corresponding implementation in Ada:

[Ada]

show_volatile_object.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Object is
 4 Val : Long_Float with Volatile;
 5begin
 6 Val := 0.0;
 7 for I in 0 .. 999 loop
 8 Val := Val + 2.0 * Long_Float (I);
 9 end loop;
10
11 Put_Line ("Val: " & Long_Float'Image (Val));
12end Show_Volatile_Object;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Object_Ada
MD5: aa1e276e64e69813bfc3e3ef39f3dd47

Runtime output

Val: 9.99000000000000E+05

In this example, Val has the Volatile aspect, which makes the
object volatile. We can also use the Volatile aspect in type
declarations. For example:

[Ada]

show_volatile_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Type is
 4 type Volatile_Long_Float is new Long_Float with Volatile;
 5
 6 Val : Volatile_Long_Float;
 7begin
 8 Val := 0.0;
 9 for I in 0 .. 999 loop
10 Val := Val + 2.0 * Volatile_Long_Float (I);
11 end loop;
12
13 Put_Line ("Val: " & Volatile_Long_Float'Image (Val));
14end Show_Volatile_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Type
MD5: 41ecf028803a58ce244c421eaeb118e4

Runtime output

Val: 9.99000000000000E+05

Here, we're declaring a new type Volatile_Long_Float based on the
Long_Float type and using the Volatile aspect. Any object of this
type is automatically volatile.

In addition to that, we can declare components of an array to be volatile. In
this case, we can use the Volatile_Components aspect in the array
declaration. For example:

[Ada]

show_volatile_array_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Array_Components is
 4 Arr : array (1 .. 2) of Long_Float with Volatile_Components;
 5begin
 6 Arr := (others => 0.0);
 7
 8 for I in 0 .. 999 loop
 9 Arr (1) := Arr (1) + 2.0 * Long_Float (I);
10 Arr (2) := Arr (2) + 10.0 * Long_Float (I);
11 end loop;
12
13 Put_Line ("Arr (1): " & Long_Float'Image (Arr (1)));
14 Put_Line ("Arr (2): " & Long_Float'Image (Arr (2)));
15end Show_Volatile_Array_Components;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Array_Components
MD5: 601d61dd01888c60ae1a51ec513138d5

Runtime output

Arr (1): 9.99000000000000E+05
Arr (2): 4.99500000000000E+06

Note that it's possible to use the Volatile aspect for the array
declaration as well:

[Ada]

Arr : array (1 .. 2) of Long_Float with Volatile;

Atomic

An atomic object is an object that only accepts atomic reads and updates. The
Ada standard specifies that "for an atomic object (including an atomic
component), all reads and updates of the object as a whole are indivisible."
In this case, the compiler must generate Assembly code in such a way that reads
and updates of an atomic object must be done in a single instruction, so that
no other instruction could execute on that same object before the read or
update completes.

In other contexts

Generally, we can say that operations are said to be atomic when they can
be completed without interruptions. This is an important requirement when
we're performing operations on objects in memory that are shared between
multiple processes.

This definition of atomicity above is used, for example, when implementing
databases. However, for this section, we're using the term "atomic"
differently. Here, it really means that reads and updates must be performed
with a single Assembly instruction.

For example, if we have a 32-bit object composed of four 8-bit bytes, the
compiler cannot generate code to read or update the object using four 8-bit
store / load instructions, or even two 16-bit store / load instructions.
In this case, in order to maintain atomicity, the compiler must generate
code using one 32-bit store / load instruction.

Because of this strict definition, we might have objects for which the
Atomic aspect cannot be specified. Lots of machines support integer
types that are larger than the native word-sized integer. For example, a
16-bit machine probably supports both 16-bit and 32-bit integers, but only
16-bit integer objects can be marked as atomic — or, more generally,
only objects that fit into at most 16 bits.

Atomicity may be important, for example, when dealing with shared hardware
registers. In fact, for certain architectures, the hardware may require that
memory-mapped registers are handled atomically. In Ada, we can use the
Atomic aspect to indicate that an object is atomic. This is how we can
use the aspect to declare a shared hardware register:

[Ada]

show_shared_hw_register.adb

1with System;
2
3procedure Show_Shared_HW_Register is
4 R : Integer
5 with Atomic, Address => System'To_Address (16#FFFF00A0#);
6begin
7 null;
8end Show_Shared_HW_Register;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Atomic_Object
MD5: 7ef148adf393819fc3fbc25eb45afe46

Note that the Address aspect allows for assigning a variable to a
specific location in the memory. In this example, we're using this aspect to
specify the address of the memory-mapped register. We'll discuss more about the
Address aspect later in the section about
mapping structures to bit-fields (in
chapter 6).

In addition to atomic objects, we can declare atomic types and atomic array
components — similarly to what we've seen before for volatile objects.
For example:

[Ada]

show_shared_hw_register.adb

 1with System;
 2
 3procedure Show_Shared_HW_Register is
 4 type Atomic_Integer is new Integer with Atomic;
 5
 6 R : Atomic_Integer with Address => System'To_Address (16#FFFF00A0#);
 7
 8 Arr : array (1 .. 2) of Integer with Atomic_Components;
 9begin
10 null;
11end Show_Shared_HW_Register;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Atomic_Types_Arrays
MD5: 11475b5152087eff7f36abfe2c5ae9a1

In this example, we're declaring the Atomic_Integer type, which is an
atomic type. Objects of this type — such as R in this example
— are automatically atomic. This example also includes the declaration
of the Arr array, which has atomic components.

Interfacing with Devices

Previously, we've seen that we can use
representation clauses to specify a particular
layout for a record type. As mentioned before, this is useful when interfacing
with hardware, drivers, or communication protocols. In this section, we'll
extend this concept for two specific use-cases: register overlays and data
streams. Before we discuss those use-cases, though, we'll first explain the
Size aspect and the Size attribute.

Size aspect and attribute

The Size aspect indicates the minimum number of bits required to
represent an object. When applied to a type, the Size aspect is telling
the compiler to not make record or array components of a type T any
smaller than X bits. Therefore, a common usage for this aspect is to
just confirm expectations: developers specify 'Size to tell the compiler
that T should fit X bits, and the compiler will tell them if they
are right (or wrong).

When the specified size value is larger than necessary, it can cause objects to
be bigger in memory than they would be otherwise. For example, for some
enumeration types, we could say for type Enum'Size use 32; when the
number of literals would otherwise have required only a byte. That's useful for
unchecked conversions because the sizes of the two types need to be the same.
Likewise, it's useful for interfacing with C, where enum types are just
mapped to the int type, and thus larger than Ada might otherwise
require. We'll discuss unchecked conversions
later in the course.

Let's look at an example from an earlier chapter:

[Ada]

my_device_types.ads

1package My_Device_Types is
2
3 type UInt10 is mod 2 ** 10
4 with Size => 10;
5
6end My_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 049be992b876dba42cf091afc256db35

Here, we're saying that objects of type UInt10 must have at least 10
bits. In this case, if the code compiles, it is a confirmation that such values
can be represented in 10 bits when packed into an enclosing record or array
type.

If the size specified was larger than what the compiler would use by default,
then it could affect the size of objects. For example, for UInt10,
anything up to and including 16 would make no difference on a typical machine.
However, anything over 16 would then push the compiler to use a larger object
representation. That would be important for unchecked conversions, for example.

The Size attribute indicates the number of bits required to represent a
type or an object. We can use the size attribute to retrieve the size of a type
or of an object:

[Ada]

show_device_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with My_Device_Types; use My_Device_Types;
 4
 5procedure Show_Device_Types is
 6 UInt10_Obj : constant UInt10 := 0;
 7begin
 8 Put_Line ("Size of UInt10 type: " & Positive'Image (UInt10'Size));
 9 Put_Line ("Size of UInt10 object: " & Positive'Image (UInt10_Obj'Size));
10end Show_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 4e46ad9cf54276b381b960672daa03b9

Runtime output

Size of UInt10 type: 10
Size of UInt10 object: 16

Here, we're retrieving the actual sizes of the UInt10 type and an
object of that type. Note that the sizes don't necessarily need to match. For
example, although the size of UInt10 type is expected to be 10 bits, the
size of UInt10_Obj may be 16 bits, depending on the platform. Also,
components of this type within composite types (arrays, records) will probably
be 16 bits as well unless they are packed.

Register overlays

Register overlays make use of representation clauses to create a structure that
facilitates manipulating bits from registers. Let's look at a simplified
example of a power management controller containing registers such as a system
clock enable register. Note that this example is based on an actual
architecture:

[Ada]

registers.ads

 1with System;
 2
 3package Registers is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7 type UInt5 is mod 2 ** 5
 8 with Size => 5;
 9 type UInt10 is mod 2 ** 10
10 with Size => 10;
11
12 subtype USB_Clock_Enable is Bit;
13
14 -- System Clock Enable Register
15 type PMC_SCER_Register is record
16 -- Reserved bits
17 Reserved_0_4 : UInt5 := 16#0#;
18 -- Write-only. Enable USB FS Clock
19 USBCLK : USB_Clock_Enable := 16#0#;
20 -- Reserved bits
21 Reserved_6_15 : UInt10 := 16#0#;
22 end record
23 with
24 Volatile,
25 Size => 16,
26 Bit_Order => System.Low_Order_First;
27
28 for PMC_SCER_Register use record
29 Reserved_0_4 at 0 range 0 .. 4;
30 USBCLK at 0 range 5 .. 5;
31 Reserved_6_15 at 0 range 6 .. 15;
32 end record;
33
34 -- Power Management Controller
35 type PMC_Peripheral is record
36 -- System Clock Enable Register
37 PMC_SCER : aliased PMC_SCER_Register;
38 -- System Clock Disable Register
39 PMC_SCDR : aliased PMC_SCER_Register;
40 end record
41 with Volatile;
42
43 for PMC_Peripheral use record
44 -- 16-bit register at byte 0
45 PMC_SCER at 16#0# range 0 .. 15;
46 -- 16-bit register at byte 2
47 PMC_SCDR at 16#2# range 0 .. 15;
48 end record;
49
50 -- Power Management Controller
51 PMC_Periph : aliased PMC_Peripheral
52 with Import, Address => System'To_Address (16#400E0600#);
53
54end Registers;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.PMC_Peripheral
MD5: d6f37976ca653d65d71ee5ea463df81c

First, we declare the system clock enable register — this is
PMC_SCER_Register type in the code example. Most of the bits in that
register are reserved. However, we're interested in bit #5, which is used to
activate or deactivate the system clock. To achieve a correct representation of
this bit, we do the following:

	We declare the USBCLK component of this record using the
USB_Clock_Enable type, which has a size of one bit; and

	we use a representation clause to indicate that the USBCLK component
is specifically at bit #5 of byte #0.

After declaring the system clock enable register and specifying its individual
bits as components of a record type, we declare the power management controller
type — PMC_Peripheral record type in the code example. Here, we
declare two 16-bit registers as record components of PMC_Peripheral.
These registers are used to enable or disable the system clock. The strategy
we use in the declaration is similar to the one we've just seen above:

	We declare these registers as components of the PMC_Peripheral record
type;

	we use a representation clause to specify that the PMC_SCER register
is at byte #0 and the PMC_SCDR register is at byte #2.

	Since these registers have 16 bits, we use a range of bits from 0 to 15.

The actual power management controller becomes accessible by the declaration of
the PMC_Periph object of PMC_Peripheral type. Here, we specify
the actual address of the memory-mapped registers (400E0600 in hexadecimal)
using the Address aspect in the declaration. When we use the
Address aspect in an object declaration, we're indicating the address in
memory of that object.

Because we specify the address of the memory-mapped registers in the
declaration of PMC_Periph, this object is now an overlay for those
registers. This also means that any operation on this object corresponds to an
actual operation on the registers of the power management controller. We'll
discuss more details about overlays in the section about
mapping structures to bit-fields (in
chapter 6).

Finally, in a test application, we can access any bit of any register of the
power management controller with simple record component selection. For
example, we can set the USBCLK bit of the PMC_SCER register by
using PMC_Periph.PMC_SCER.USBCLK:

[Ada]

enable_usb_clock.adb

1with Registers;
2
3procedure Enable_USB_Clock is
4begin
5 Registers.PMC_Periph.PMC_SCER.USBCLK := 1;
6end Enable_USB_Clock;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.PMC_Peripheral
MD5: b8f35a80d5f04cd362e5309aef33a100

This code example makes use of many aspects and keywords of the Ada language.
One of them is the Volatile aspect, which we've discussed in the section
about volatile and atomic objects. Using the
Volatile aspect for the PMC_SCER_Register type ensures that
objects of this type won't be stored in a register.

In the declaration of the PMC_SCER_Register record type of the example,
we use the Bit_Order aspect to specify the bit ordering of the
record type. Here, we can select one of these options:

	High_Order_First: first bit of the record is the most significant bit;

	Low_Order_First: first bit of the record is the least significant bit.

The declarations from the Registers package also makes use of the
Import, which is sometimes necessary when creating overlays. When used
in the context of object declarations, it avoids default initialization (for
data types that have it.). Aspect Import will be discussed in the
section that explains how to
map structures to bit-fields in
chapter 6. Please refer to that chapter for more details.

Details about 'Size

In the example above, we're using the Size aspect in the declaration
of the PMC_SCER_Register type. In this case, the effect is that it
has the compiler confirm that the record type will fit into the expected
16 bits.

That's what the aspect does for type PMC_SCER_Register in the
example above, as well as for the types Bit, UInt5 and
UInt10. For example, we may declare a stand-alone object of type
Bit:

show_bit_declaration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Bit_Declaration is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7
 8 B : constant Bit := 0;
 9 -- ^ Although Bit'Size is 1, B'Size is almost certainly 8
10begin
11 Put_Line ("Bit'Size = " & Positive'Image (Bit'Size));
12 Put_Line ("B'Size = " & Positive'Image (B'Size));
13end Show_Bit_Declaration;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Bit_Declaration
MD5: 1778bb96b4bf77292885bdedfee7c596

Runtime output

Bit'Size = 1
B'Size = 8

In this case, B is almost certainly going to be 8-bits wide on a
typical machine, even though the language requires that Bit'Size is
1 by default.

In the declaration of the components of the PMC_Peripheral record type,
we use the aliased keyword to specify that those record components are
accessible via other paths besides the component name. Therefore, the compiler
won't store them in registers. This makes sense because we want to ensure
that we're accessing specific memory-mapped registers, and not registers
assigned by the compiler. Note that, for the same reason, we also use the
aliased keyword in the declaration of the PMC_Periph object.

Data streams

Creating data streams — in the context of interfacing with devices
— means the serialization of arbitrary information and its transmission
over a communication channel. For example, we might want to transmit the
content of memory-mapped registers as byte streams using a serial port. To do
this, we first need to get a serialized representation of those registers as an
array of bytes, which we can then transmit over the serial port.

Serialization of arbitrary record types — including register overlays
— can be achieved by declaring an array of bytes as an overlay. By doing
this, we're basically interpreting the information from those record types as
bytes while ignoring their actual structure — i.e. their components and
representation clause. We'll discuss details about overlays in the section
about
mapping structures to bit-fields (in
chapter 6).

Let's look at a simple example of serialization of an arbitrary record type:

[Ada]

arbitrary_types.ads

1package Arbitrary_Types is
2
3 type Arbitrary_Record is record
4 A : Integer;
5 B : Integer;
6 C : Integer;
7 end record;
8
9end Arbitrary_Types;

serialize_data.ads

1with Arbitrary_Types;
2
3procedure Serialize_Data (Some_Object : Arbitrary_Types.Arbitrary_Record);

serialize_data.adb

 1with Arbitrary_Types;
 2
 3procedure Serialize_Data (Some_Object : Arbitrary_Types.Arbitrary_Record) is
 4 type UByte is new Natural range 0 .. 255
 5 with Size => 8;
 6
 7 type UByte_Array is array (Positive range <>) of UByte;
 8
 9 --
10 -- We can access the serialized data in Raw_TX, which is our overlay
11 --
12 Raw_TX : UByte_Array (1 .. Some_Object'Size / 8)
13 with Address => Some_Object'Address;
14begin
15 null;
16 --
17 -- Now, we could stream the data from Some_Object.
18 --
19 -- For example, we could send the bytes (from Raw_TX) via the
20 -- serial port.
21 --
22end Serialize_Data;

data_stream_declaration.adb

1with Arbitrary_Types;
2with Serialize_Data;
3
4procedure Data_Stream_Declaration is
5 Dummy_Object : Arbitrary_Types.Arbitrary_Record;
6
7begin
8 Serialize_Data (Dummy_Object);
9end Data_Stream_Declaration;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Data_Stream_Declaration
MD5: 1de6f518520010c28fd8deb29a2bf209

The most important part of this example is the implementation of the
Serialize_Data procedure, where we declare Raw_TX as an overlay
for our arbitrary object (Some_Object of Arbitrary_Record type).
In simple terms, by writing with Address => Some_Object'Address; in the
declaration of Raw_TX, we're specifying that Raw_TX and
Some_Object have the same address in memory. Here, we are:

	taking the address of Some_Object — using the Address
attribute —, and then

	using it as the address of Raw_TX — which is specified with
the Address aspect.

By doing this, we're essentially saying that both Raw_TX and
Some_Object are different representations of the same object in memory.

Because the Raw_TX overlay is completely agnostic about the actual
structure of the record type, the Arbitrary_Record type could really be
anything. By declaring Raw_TX, we create an array of bytes that we can
use to stream the information from Some_Object.

We can use this approach and create a data stream for the register overlay
example that we've seen before. This is the corresponding implementation:

[Ada]

registers.ads

 1with System;
 2
 3package Registers is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7 type UInt5 is mod 2 ** 5
 8 with Size => 5;
 9 type UInt10 is mod 2 ** 10
10 with Size => 10;
11
12 subtype USB_Clock_Enable is Bit;
13
14 -- System Clock Register
15 type PMC_SCER_Register is record
16 -- Reserved bits
17 Reserved_0_4 : UInt5 := 16#0#;
18 -- Write-only. Enable USB FS Clock
19 USBCLK : USB_Clock_Enable := 16#0#;
20 -- Reserved bits
21 Reserved_6_15 : UInt10 := 16#0#;
22 end record
23 with
24 Volatile,
25 Size => 16,
26 Bit_Order => System.Low_Order_First;
27
28 for PMC_SCER_Register use record
29 Reserved_0_4 at 0 range 0 .. 4;
30 USBCLK at 0 range 5 .. 5;
31 Reserved_6_15 at 0 range 6 .. 15;
32 end record;
33
34 -- Power Management Controller
35 type PMC_Peripheral is record
36 -- System Clock Enable Register
37 PMC_SCER : aliased PMC_SCER_Register;
38 -- System Clock Disable Register
39 PMC_SCDR : aliased PMC_SCER_Register;
40 end record
41 with Volatile;
42
43 for PMC_Peripheral use record
44 -- 16-bit register at byte 0
45 PMC_SCER at 16#0# range 0 .. 15;
46 -- 16-bit register at byte 2
47 PMC_SCDR at 16#2# range 0 .. 15;
48 end record;
49
50 -- Power Management Controller
51 PMC_Periph : aliased PMC_Peripheral;
52-- with Import, Address => System'To_Address (16#400E0600#);
53
54end Registers;

serial_ports.ads

 1package Serial_Ports is
 2
 3 type UByte is new Natural range 0 .. 255
 4 with Size => 8;
 5
 6 type UByte_Array is array (Positive range <>) of UByte;
 7
 8 type Serial_Port is null record;
 9
10 procedure Read (Port : in out Serial_Port;
11 Data : out UByte_Array);
12
13 procedure Write (Port : in out Serial_Port;
14 Data : UByte_Array);
15
16end Serial_Ports;

serial_ports.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serial_Ports is
 4
 5 procedure Display (Data : UByte_Array) is
 6 begin
 7 Put_Line ("---- Data ----");
 8 for E of Data loop
 9 Put_Line (UByte'Image (E));
10 end loop;
11 Put_Line ("--------------");
12 end Display;
13
14 procedure Read (Port : in out Serial_Port;
15 Data : out UByte_Array) is
16 pragma Unreferenced (Port);
17 begin
18 Put_Line ("Reading data...");
19 Data := (0, 0, 32, 0);
20 end Read;
21
22 procedure Write (Port : in out Serial_Port;
23 Data : UByte_Array) is
24 pragma Unreferenced (Port);
25 begin
26 Put_Line ("Writing data...");
27 Display (Data);
28 end Write;
29
30end Serial_Ports;

data_stream.ads

 1with Serial_Ports; use Serial_Ports;
 2with Registers; use Registers;
 3
 4package Data_Stream is
 5
 6 procedure Send (Port : in out Serial_Port;
 7 PMC : PMC_Peripheral);
 8
 9 procedure Receive (Port : in out Serial_Port;
10 PMC : out PMC_Peripheral);
11
12end Data_Stream;

data_stream.adb

 1package body Data_Stream is
 2
 3 procedure Send (Port : in out Serial_Port;
 4 PMC : PMC_Peripheral)
 5 is
 6 Raw_TX : UByte_Array (1 .. PMC'Size / 8)
 7 with Address => PMC'Address;
 8 begin
 9 Write (Port => Port,
10 Data => Raw_TX);
11 end Send;
12
13 procedure Receive (Port : in out Serial_Port;
14 PMC : out PMC_Peripheral)
15 is
16 Raw_TX : UByte_Array (1 .. PMC'Size / 8)
17 with Address => PMC'Address;
18 begin
19 Read (Port => Port,
20 Data => Raw_TX);
21 end Receive;
22
23end Data_Stream;

test_data_stream.adb

 1with Ada.Text_IO;
 2
 3with Registers;
 4with Data_Stream;
 5with Serial_Ports;
 6
 7procedure Test_Data_Stream is
 8
 9 procedure Display_Registers is
10 use Ada.Text_IO;
11 begin
12 Put_Line ("---- Registers ----");
13 Put_Line ("PMC_SCER.USBCLK: "
14 & Registers.PMC_Periph.PMC_SCER.USBCLK'Image);
15 Put_Line ("PMC_SCDR.USBCLK: "
16 & Registers.PMC_Periph.PMC_SCDR.USBCLK'Image);
17 Put_Line ("-------------- ----");
18 end Display_Registers;
19
20 Port : Serial_Ports.Serial_Port;
21begin
22 Registers.PMC_Periph.PMC_SCER.USBCLK := 1;
23 Registers.PMC_Periph.PMC_SCDR.USBCLK := 1;
24
25 Display_Registers;
26
27 Data_Stream.Send (Port => Port,
28 PMC => Registers.PMC_Periph);
29
30 Data_Stream.Receive (Port => Port,
31 PMC => Registers.PMC_Periph);
32
33 Display_Registers;
34end Test_Data_Stream;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Data_Stream
MD5: 3f4e1a184e52a83b1b9de9e3d5cb43bf

Runtime output

---- Registers ----
PMC_SCER.USBCLK: 1
PMC_SCDR.USBCLK: 1
-------------- ----
Writing data...
---- Data ----
 32
 0
 32
 0

Reading data...
---- Registers ----
PMC_SCER.USBCLK: 0
PMC_SCDR.USBCLK: 1
-------------- ----

In this example, we can find the overlay in the implementation of the
Send and Receive procedures from the Data_Stream package.
Because the overlay doesn't need to know the internals of the
PMC_Peripheral type, we're declaring it in the same way as in the
previous example (where we created an overlay for Some_Object). In this
case, we're creating an overlay for the PMC parameter.

Note that, for this section, we're not really interested in the details about
the serial port. Thus, package Serial_Ports in this example is just a
stub. However, because the Serial_Port type in that package only sees
arrays of bytes, after implementing an actual serial port interface for a
specific device, we could create data streams for any type.

ARM and svd2ada

As we've seen in the previous section about
interfacing with devices, Ada offers powerful
features to describe low-level details about the hardware architecture without
giving up its strong typing capabilities. However, it can be cumbersome
to create a specification for all those low-level details when you have a
complex architecture. Fortunately, for ARM Cortex-M devices, the GNAT toolchain
offers an Ada binding generator called svd2ada, which takes
CMSIS-SVD descriptions for those devices and creates Ada specifications that
match the architecture. CMSIS-SVD description files are based on the Cortex
Microcontroller Software Interface Standard (CMSIS), which is a hardware
abstraction layer for ARM Cortex microcontrollers.

Please refer to the
svd2ada project page[#6] for details about
this tool.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx/the_gnat_configurable_run_time_facility.html

[#2]
http://www.ada-auth.org/standards/12aarm/html/AA-C-3-2.html

[#3]
https://en.wikipedia.org/wiki/Q_(number_format)

[#4]
https://en.wikipedia.org/wiki/Volatile_(computer_programming)

[#5]
https://en.wikipedia.org/wiki/Memory-mapped_I/O

[#6]
https://github.com/AdaCore/svd2ada

Enhancing Verification with SPARK and Ada

Understanding Exceptions and Dynamic Checks

In Ada, several common programming errors that are not already detected
at compile-time are detected instead at run-time, triggering
"exceptions" that interrupt the normal flow of execution. For example,
an exception is raised by an attempt to access an array component via an
index that is out of bounds. This simple check precludes exploits based
on buffer overflow. Several other cases also raise language-defined
exceptions, such as scalar range constraint violations and null pointer
dereferences. Developers may declare and raise their own
application-specific exceptions too. (Exceptions are software artifacts,
although an implementation may map hardware events to exceptions.)

Exceptions are raised during execution of what we will loosely define as
a "frame." A frame is a language construct that has a call stack entry
when called, for example a procedure or function body. There are a few
other constructs that are also pertinent but this definition will
suffice for now.

Frames have a sequence of statements implementing their functionality.
They can also have optional "exception handlers" that specify the
response when exceptions are "raised" by those statements. These
exceptions could be raised directly within the statements, or indirectly
via calls to other procedures and functions.

For example, the frame below is a procedure including three exceptions
handlers:

p.adb

 1procedure P is
 2begin
 3 Statements_That_Might_Raise_Exceptions;
 4exception
 5 when A =>
 6 Handle_A;
 7 when B =>
 8 Handle_B;
 9 when C =>
10 Handle_C;
11end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: bf7a8740dfca9f3da993f054e22ca97d

The three exception handlers each start with the word when (lines
5, 7, and 9). Next comes one or more exception identifiers, followed by
the so-called "arrow." In Ada, the arrow always associates something on
the left side with something on the right side. In this case, the left
side is the exception name and the right side is the handler's code for
that exception.

Each handler's code consists of an arbitrary sequence of statements, in
this case specific procedures called in response to those specific
exceptions. If exception A is raised we call procedure
Handle_A (line 6), dedicated to doing the actual work of handling
that exception. The other two exceptions are dealt with similarly, on
lines 8 and 10.

Structurally, the exception handlers are grouped together and textually
separated from the rest of the code in a frame. As a result, the
sequence of statements representing the normal flow of execution is
distinct from the section representing the error handling. The
reserved word exception separates these two sections (line 4
above). This separation helps simplify the overall flow, increasing
understandability. In particular, status result codes are not required
so there is no mixture of error checking and normal processing. If no
exception is raised the exception handler section is automatically
skipped when the frame exits.

Note how the syntactic structure of the exception handling section
resembles that of an Ada case statement. The resemblance is intentional,
to suggest similar behavior. When something in the statements of the
normal execution raises an exception, the corresponding exception
handler for that specific exception is executed. After that, the routine
completes. The handlers do not "fall through" to the handlers below. For
example, if exception B is raised, procedure Handle_B is
called but Handle_C is not called. There's no need for a
break statement, just as there is no need for it in a case
statement. (There's no break statement in Ada anyway.)

So far, we've seen a frame with three specific exceptions handled. What
happens if a frame has no handler for the actual exception raised? In
that case the run-time library code goes "looking" for one.

Specifically, the active exception is propagated up the dynamic call
chain. At each point in the chain, normal execution in that caller is
abandoned and the handlers are examined. If that caller has a handler
for the exception, the handler is executed. That caller then returns
normally to its caller and execution continues from there. Otherwise,
propagation goes up one level in the call chain and the process repeats.
The search continues until a matching handler is found or no callers
remain. If a handler is never found the application terminates
abnormally. If the search reaches the main procedure and it has a
matching handler it will execute the handler, but, as always, the
routine completes so once again the application terminates.

For a concrete example, consider the following:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: a2dfa05b56144e21d5796d39c88ceac2

arrays.adb

1package body Arrays is
2
3 function Value (A : List; X, Y : Integer) return Integer is
4 begin
5 return A (X + Y * 10);
6 end Value;
7
8end Arrays;

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("Constraint_Error caught in Some_Process");
11 Put_Line ("Some_Process completes normally");
12end Some_Process;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: 7733854601db37eb53f4c4094fe5ca0d

main.adb

1with Some_Process;
2with Ada.Text_IO; use Ada.Text_IO;
3
4procedure Main is
5begin
6 Some_Process;
7 Put_Line ("Main completes normally");
8end Main;

Procedure Main calls Some_Process, which in turn calls
function Value (line 7). Some_Process declares the array
object L of type List on line 5, with bounds 1 through
100. The call to Value has arguments, including variable
L, leading to an attempt to access an array component via an
out-of-bounds index (1 + 10 * 10 = 101, beyond the last index of
L). This attempt will trigger an exception in Value prior
to actually accessing the array object's memory. Function Value
doesn't have any exception handlers so the exception is propagated up to
the caller Some_Process. Procedure Some_Process has an
exception handler for Constraint_Error and it so happens that
Constraint_Error is the exception raised in this case. As a
result, the code for that handler will be executed, printing some
messages on the screen. Then procedure Some_Process will return
to Main normally. Main then continues to execute normally
after the call to Some_Process and prints its completion message.

If procedure Some_Process had also not had a handler for
Constraint_Error, that procedure call would also have returned
abnormally and the exception would have been propagated further up the
call chain to procedure Main. Normal execution in Main
would likewise be abandoned in search of a handler. But Main does
not have any handlers so Main would have completed abnormally,
immediately, without printing its closing message.

This semantic model is the same as with many other programming languages,
in which the execution of a frame's sequence of statements is
unavoidably abandoned when an exception becomes active. The model is a
direct reaction to the use of status codes returned from functions as in
C, where it is all too easy to forget (intentionally or otherwise) to
check the status values returned. With the exception model errors cannot
be ignored.

However, full exception propagation as described above is not the norm
for embedded applications when the highest levels of integrity are
required. The run-time library code implementing exception propagation
can be rather complex and expensive to certify. Those problems apply to
the application code too, because exception propagation is a form of
control flow without any explicit construct in the source. Instead of
the full exception model, designers of high-integrity applications often
take alternative approaches.

One alternative consists of deactivating exceptions altogether, or more
precisely, deactivating language-defined checks, which means that the
compiler will not generate code checking for conditions giving rise to
exceptions. Of course, this makes the code vulnerable to attacks, such
as buffer overflow, unless otherwise verified (e.g. through static
analysis). Deactivation can be applied at the unit level, through the
-gnatp compiler switch, or locally within a unit via the
pragma Suppress. (Refer to the
GNAT User’s Guide for Native Platforms[#1]
for more details about the switch.)

For example, we can write the following. Note the pragma on line 4 of
arrays.adb within function Value:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

1package body Arrays is
2
3 function Value (A : List; X, Y : Integer) return Integer is
4 pragma Suppress (All_Checks);
5 begin
6 return A (X + Y * 10);
7 end Value;
8
9end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Suppress
MD5: 62c37774cbcd5f167858d3b5268006aa

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

This placement of the pragma will only suppress checks in the function
body. However, that is where the exception would otherwise have been
raised, leading to incorrect and unpredictable execution. (Run the
program more than once. If it prints the right answer (42), or even the
same value each time, it's just a coincidence.) As you can see,
suppressing checks negates the guarantee of errors being detected and
addressed at run-time.

Another alternative is to leave checks enabled but not retain the
dynamic call-chain propagation. There are a couple of approaches
available in this alternative.

The first approach is for the run-time library to invoke a global "last
chance handler" (LCH) when any exception is raised. Instead of the
sequence of statements of an ordinary exception handler, the LCH is
actually a procedure intended to perform "last-wishes" before the
program terminates. No exception handlers are allowed. In this scheme
"propagation" is simply a direct call to the LCH procedure. The default LCH
implementation provided by GNAT does nothing other than loop infinitely.
Users may define their own replacement implementation.

The availability of this approach depends on the run-time library.
Typically, Zero Footprint and Ravenscar SFP run-times will provide
this mechanism because they are intended for certification.

A user-defined LCH handler can be provided either in C or in Ada, with
the following profiles:

[Ada]

procedure Last_Chance_Handler (Source_Location : System.Address; Line : Integer);
pragma Export (C,
 Last_Chance_Handler,
 "__gnat_last_chance_handler");

[C]

void __gnat_last_chance_handler (char *source_location,
 int line);

We'll go into the details of the pragma Export in a further
section on language interfacing. For now, just know that the symbol
__gnat_last_chance_handler is what the run-time uses to branch
immediately to the last-chance handler. Pragma Export associates
that symbol with this replacement procedure so it will be invoked
instead of the default routine. As a consequence, the actual procedure
name in Ada is immaterial.

Here is an example implementation that simply blinks an LED
forever on the target:

procedure Last_Chance_Handler (Msg : System.Address; Line : Integer) is
 pragma Unreferenced (Msg, Line);

 Next_Release : Time := Clock;
 Period : constant Time_Span := Milliseconds (500);
begin
 Initialize_LEDs;
 All_LEDs_Off;

 loop
 Toggle (LCH_LED);
 Next_Release := Next_Release + Period;
 delay until Next_Release;
 end loop;
end Last_Chance_Handler;

The LCH_LED is a constant referencing the LED used by the
last-chance handler, declared elsewhere. The infinite loop is necessary
because a last-chance handler must never return to the caller (hence the
term "last-chance"). The LED changes state every half-second.

Unlike the approach in which there is only the last-chance handler
routine, the other approach allows exception handlers, but in a
specific, restricted manner. Whenever an exception is raised, the only
handler that can apply is a matching handler located in the same frame
in which the exception is raised. Propagation in this context is simply
an immediate branch instruction issued by the compiler, going directly
to the matching handler's sequence of statements. If there is no
matching local handler the last chance handler is invoked. For example
consider the body of function Value in the body of package Arrays:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

 1package body Arrays is
 2
 3 function Value (A : List; X, Y : Integer) return Integer is
 4 begin
 5 return A (X + Y * 10);
 6 exception
 7 when Constraint_Error =>
 8 return 0;
 9 end Value;
10
11end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Return
MD5: 1f63b92739deb03529884ab0d25dadb8

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

In both procedure Some_Process and function Value we have
an exception handler for Constraint_Error. In this example the
exception is raised in Value because the index check fails there.
A local handler for that exception is present so the handler applies and
the function returns zero, normally. Because the call to the function
returns normally, the execution of Some_Process prints zero and
then completes normally.

Let's imagine, however, that function Value did not have a
handler for Constraint_Error. In the context of full exception
propagation, the function call would return to the caller, i.e.,
Some_Process, and would be handled in that procedure's handler.
But only local handlers are allowed under the second alternative so the
lack of a local handler in Value would result in the last-chance
handler being invoked. The handler for Constraint_Error in
Some_Process under this alternative approach.

So far we've only illustrated handling the Constraint_Error
exception. It's possible to handle other language-defined and
user-defined exceptions as well, of course. It is even possible to
define a single handler for all other exceptions that might be
encountered in the handled sequence of statements, beyond those
explicitly named. The "name" for this otherwise anonymous exception is
the Ada reserved word others. As in case statements, it covers
all other choices not explicitly mentioned, and so must come last. For
example:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

 1package body Arrays is
 2
 3 function Value (A : List; X, Y : Integer) return Integer is
 4 begin
 5 return A (X + Y * 10);
 6 exception
 7 when Constraint_Error =>
 8 return 0;
 9 when others =>
10 return -1;
11 end Value;
12
13end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Return_Others
MD5: 7c2ed7efa23242f502a6cf4767da0192

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

In the code above, the Value function has a handler specifically
for Constraint_Error as before, but also now has a handler for
all other exceptions. For any exception other than Constraint_Error,
function Value returns -1. If you remove the function's handler
for Constraint_Error (lines 7 and 8) then the other "anonymous"
handler will catch the exception and -1 will be returned instead of zero.

There are additional capabilities for exceptions, but for now you have a good
basic understanding of how exceptions work, especially their dynamic
nature at run-time.

Understanding Dynamic Checks versus Formal Proof

So far, we have discussed language-defined checks inserted by the
compiler for verification at run-time, leading to exceptions being
raised. We saw that these dynamic checks verified semantic conditions
ensuring proper execution, such as preventing writing past the end of a
buffer, or exceeding an application-specific integer range constraint,
and so on. These checks are defined by the language because they apply
generally and can be expressed in language-defined terms.

Developers can also define dynamic checks. These checks specify
component-specific or application-specific conditions, expressed in
terms defined by the component or application. We will refer to these
checks as "user-defined" for convenience. (Be sure you understand that
we are not talking about user-defined exceptions here.)

Like the language-defined checks, user-defined checks must be
true at run-time. All checks consist of Boolean conditions, which is why
we can refer to them as assertions: their conditions are asserted to be
true by the compiler or developer.

Assertions come in several forms, some relatively low-level,
such as a simple pragma Assert, and some high-level, such as type
invariants and contracts. These forms will be presented in detail in a
later section, but we will illustrate some of them here.

User-defined checks can be enabled at run-time in GNAT with the -gnata
switch, as well as with pragma Assertion_Policy. The switch
enables all forms of these assertions, whereas the pragma can be used to
control specific forms. The switch is typically used but there are
reasonable use-cases in which some user-defined checks are enabled,
and others, although defined, are disabled.

By default in GNAT, language-defined checks are enabled but user-defined
checks are disabled. Here's an example of a simple program employing a
low-level assertion. We can use it to show the effects of the switches,
including the defaults:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 X : Positive := 10;
 5begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Low_Level_Assertion
MD5: 2eb5e1879740cc3914acb8a362995b31

If we compiled this code we would get a warning about the assignment on
line 8 after the pragma Assert, but not one about the
Assert itself on line 7.

gprbuild -q -P main.gpr
main.adb:8:11: warning: value not in range of type "Standard.Positive"
main.adb:8:11: warning: "Constraint_Error" will be raised at run time

No code is generated for the user-defined check expressed via pragma
Assert but the language-defined check is emitted. In this case the range
constraint on X excludes zero and negative numbers, but X *
5 = 50, X - 99 = -49. As a result, the check for the last
assignment would fail, raising Constraint_Error when the program runs.
These results are the expected behavior for the default switch settings.

But now let's enable user-defined checks and build it. Different
compiler output will appear.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 X : Positive := 10;
 5begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Assert
MD5: 2eb5e1879740cc3914acb8a362995b31

Build output

main.adb:7:19: warning: assertion will fail at run time [-gnatw.a]
main.adb:8:11: warning: value not in range of type "Standard.Positive" [enabled by default]
main.adb:8:11: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : main.adb:7

Now we also get the compiler warning about the pragma Assert condition.
When run, the failure of pragma Assert on line 7 raises the exception
Ada.Assertions.Assertion_Error. According to the expression in the
assertion, X is expected (incorrectly) to be above 99 after the
multiplication. (The exception name in the error message,
SYSTEM.ASSERTIONS.ASSERT_FAILURE, is a GNAT-specific alias for
Ada.Assertions.Assertion_Error.)

It's interesting to see in the output that the compiler can detect some
violations at compile-time:

main.adb:7:19: warning: assertion will fail at run time
main.adb:7:21: warning: condition can only be True if invalid values present
main.adb:8:11: warning: value not in range of type "Standard.Positive"

Generally speaking, a complete analysis is beyond the scope of compilers
and they may not find all errors prior to execution, even those we
might detect ourselves by inspection. More errors can be found by tools
dedicated to that purpose, known as static analyzers. But even an
automated static analysis tool cannot guarantee it will find all
potential problems.

A much more powerful alternative is formal proof, a form of static analysis
that can (when possible) give strong guarantees about the checks, for
all possible conditions and all possible inputs. Proof can be
applied to both language-defined and user-defined checks.

Be sure you understand that formal proof, as a form of static analysis,
verifies conditions prior to execution, even prior to compilation. That
earliness provides significant cost benefits. Removing bugs earlier is
far less expensive than doing so later because the cost to fix bugs
increases exponentially over the phases of the project life cycle,
especially after deployment. Preventing bug introduction into the
deployed system is the least expensive approach of all. Furthermore,
cost savings during the initial development will be possible as well,
for reasons specific to proof. We will revisit this topic later in
this section.

Formal analysis for proof can be achieved through the SPARK subset of
the Ada language combined with the gnatprove verification
tool. SPARK is a subset encompassing most of the Ada language, except
for features that preclude proof. As a disclaimer, this course is not
aimed at providing a full introduction to proof and the SPARK language,
but rather to present in a few examples what it is about and what it can
do for us.

As it turns out, our procedure Main is already SPARK compliant so
we can start verifying it.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 procedure Main is
 4 X : Positive := 10;
 5 begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Assert
MD5: 98cad2c7e7b7a12740db013727f01d45

Build output

main.adb:7:20: warning: assertion will fail at run time [-gnatw.a]
main.adb:8:12: warning: value not in range of type "Standard.Positive" [enabled by default]
main.adb:8:12: warning: Constraint_Error will be raised at run time [enabled by default]

Prover output

Phase 1 of 3: generation of data representation information ...
generation of data representation information failed
continuing analysis with partial data representation
for details, see log file gnatprove/data_representation_generation.log
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...
main.adb:7:20: medium: assertion might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : main.adb:7

The "Prove" button invokes gnatprove on main.adb. You
can ignore the parameters to the invocation. For the purpose of this
demonstration, the interesting output is this message:

main.adb:7:19: medium: assertion might fail, cannot prove X > 99 (e.g. when X = 50)

gnatprove can tell that the assertion X > 99 may have
a problem. There's indeed a bug here, and gnatprove even
gives us the counterexample (when X is 50). As a result the code
is not proven and we know we have an error to correct.

Notice that the message says the assertion "might fail" even though
clearly gnatprove has an example for when failure is certain.
That wording is a reflection of the fact that SPARK gives strong
guarantees when the assertions are proven to hold, but does not
guarantee that flagged problems are indeed problems. In other words,
gnatprove does not give false positives but false negatives
are possible. The result is that if gnatprove does not
indicate a problem for the code under analysis we can be sure there is
no problem, but if gnatprove does indicate a problem the tool
may be wrong.

Initialization and Correct Data Flow

An immediate benefit from having our code compatible with the SPARK
subset is that we can ask gnatprove to verify initialization
and correct data flow, as indicated by the absence of messages during
SPARK "flow analysis." Flow analysis detects programming errors such as
reading uninitialized data, problematic aliasing between formal
parameters, and data races between concurrent tasks.

In addition, gnatprove checks unit specifications for the
actual data read or written, and the flow of information from inputs to
outputs. As you can imagine, this verification provides significant
benefits, and it can be reached with comparatively low cost.

For example, the following illustrates an initialization failure:

main.adb

1with Increment;
2with Ada.Text_IO; use Ada.Text_IO;
3
4procedure Main is
5 B : Integer;
6begin
7 Increment (B);
8 Put_Line (B'Image);
9end Main;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_0
MD5: 06d432a84d94635bb7bddafd9574a748

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: analysis of data and information flow ...
main.adb:7:15: high: "B" is not initialized
gnatprove: unproved check messages considered as errors

Granted, Increment is a silly procedure as-is, but imagine it did
useful things, and, as part of that, incremented the argument.
gnatprove tells us that the caller has not assigned a value
to the argument passed to Increment.

Consider this next routine, which contains a serious coding error. Flow
analysis will find it for us.

compute_offset.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3procedure Compute_Offset (K : Float; Z : out Integer; Flag : out Boolean) is
 4 X : constant Float := Sin (K);
 5begin
 6 if X < 0.0 then
 7 Z := 0;
 8 Flag := True;
 9 elsif X > 0.0 then
10 Z := 1;
11 Flag := True;
12 else
13 Flag := False;
14 end if;
15end Compute_Offset;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_1
MD5: af7f16a9c83359c49fde44ed4796c8ec

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: analysis of data and information flow ...
compute_offset.adb:3:38: medium: "Z" might not be initialized in "Compute_Offset" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "Z" on all paths or make "Z" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

gnatprove tells us that Z might not be initialized
(assigned a value) in Compute_Offset, and indeed that is correct.
Z is a mode out parameter so the routine should assign a
value to it: Z is an output, after all. The fact that
Compute_Offset does not do so is a significant and nasty bug. Why is it
so nasty? In this case, formal parameter Z is of the scalar type
Integer, and scalar parameters are always passed by copy in Ada
and SPARK. That means that, when returning to the caller, an integer
value is copied to the caller's argument passed to Z. But this
procedure doesn't always assign the value to be copied back, and in that
case an arbitrary value — whatever is on the stack — is
copied to the caller's argument. The poor programmer must debug the code
to find the problem, yet the effect could appear well downstream from
the call to Compute_Offset. That's not only painful, it is expensive.
Better to find the problem before we even compile the code.

Contract-Based Programming

So far, we've seen assertions in a routine's sequence of statements,
either through implicit language-defined checks (is the index in the
right range?) or explicit user-defined checks. These checks are already
useful by themselves but they have an important limitation: the assertions
are in the implementation, hidden from the callers of the routine. For
example, a call's success or failure may depend upon certain input
values but the caller doesn't have that information.

Generally speaking, Ada and SPARK put a lot of emphasis on strong,
complete specifications for the sake of abstraction and analysis.
Callers need not examine the implementations to determine
whether the arguments passed to it are changed, for example. It is
possible to go beyond that, however, to specify implementation
constraints and functional requirements. We use contracts to do so.

At the language level, contracts are higher-level forms of assertions
associated with specifications and declarations rather than sequences
of statements. Like other assertions they can be activated or
deactivated at run-time, and can be statically proven. We'll concentrate
here on two kinds of contracts, both associated especially (but not
exclusively) with procedures and functions:

	Preconditions, those Boolean conditions required to be true prior to a
call of the corresponding subprogram

	Postconditions, those Boolean conditions required to be true after a
call, as a result of the corresponding subprogram's execution

In particular, preconditions specify the initial conditions, if any,
required for the called routine to correctly execute. Postconditions, on
the other hand, specify what the called routine's execution must have
done, at least, on normal completion. Therefore, preconditions are obligations
on callers (referred to as "clients") and postconditions are obligations
on implementers. By the same token, preconditions are guarantees to the
implementers, and postconditions are guarantees to clients.

Contract-based programming, then, is the specification and rigorous
enforcement of these obligations and guarantees. Enforcement is rigorous
because it is not manual, but tool-based: dynamically at run-time with
exceptions, or, with SPARK, statically, prior to build.

Preconditions are specified via the "Pre" aspect. Postconditions are
specified via the "Post" aspect. Usually subprograms have separate
declarations and these aspects appear with those declarations, even
though they are about the bodies. Placement on the declarations allows
the obligations and guarantees to be visible to all parties. For
example:

mid.ads

1function Mid (X, Y : Integer) return Integer with
2 Pre => X + Y /= 0,
3 Post => Mid'Result > X;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_2
MD5: 0fb78847a167d9318b00667c59a7038d

The precondition on line 2 specifies that, for any given call, the sum of the
values passed to parameters X and Y must not be zero.
(Perhaps we're dividing by X + Y in the body.) The declaration
also provides a guarantee about the function call's result, via the
postcondition on line 3: for any given call, the value returned will be greater
than the value passed to X.

Consider a client calling this function:

demo.adb

 1with Mid;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Demo is
 5 A, B, C : Integer;
 6begin
 7 A := Mid (1, 2);
 8 B := Mid (1, -1);
 9 C := Mid (A, B);
10 Put_Line (C'Image);
11end Demo;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_2
MD5: 3e0617d4b1c14b37a81377456bf73eb5

Prover output

Phase 1 of 3: generation of data representation information ...
generation of data representation information failed
continuing analysis with partial data representation
for details, see log file gnatprove/data_representation_generation.log
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...
demo.adb:8:09: medium: precondition might fail
gnatprove: unproved check messages considered as errors

gnatprove indicates that the assignment to B (line 8) might
fail because of the precondition, i.e., the sum of the inputs shouldn't
be 0, yet -1 + 1 = 0. (We will address the other output message
elsewhere.)

Let's change the argument passed to Y in the second call (line 8).
Instead of -1 we will pass -2:

demo.adb

 1with Mid;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Demo is
 5 A, B, C : Integer;
 6begin
 7 A := Mid (1, 2);
 8 B := Mid (1, -2);
 9 C := Mid (A, B);
10 Put_Line (C'Image);
11end Demo;

mid.ads

1function Mid (X, Y : Integer) return Integer with
2 Pre => X + Y /= 0,
3 Post => Mid'Result > X;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_3
MD5: 496937d76e16ba524f98f5a94398e929

Prover output

main_spark.gpr:4:18: warning: mid.ads.adb is not a source of project Main_Spark
Phase 1 of 3: generation of data representation information ...
generation of data representation information failed
continuing analysis with partial data representation
for details, see log file gnatprove/data_representation_generation.log
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...
warning: no bodies have been analyzed by GNATprove
enable analysis of a non-generic body using SPARK_Mode

The second call will no longer be flagged for the precondition. In
addition, gnatprove will know from the postcondition that
A has to be greater than 1, as does B, because in both
calls 1 was passed to X. Therefore, gnatprove can
deduce that the precondition will hold for the third call C :=
Mid (A, B); because the sum of two numbers greater than 1 will
never be zero.

Postconditions can also compare the state prior to a call with the state
after a call, using the 'Old attribute. For example:

increment.ads

1procedure Increment (Value : in out Integer) with
2 Pre => Value < Integer'Last,
3 Post => Value = Value'Old + 1;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_4
MD5: b879dcff91cb4fbce5501474b7f2e732

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...

The postcondition specifies that, on return, the argument passed to the
parameter Value will be one greater than it was immediately prior
to the call (Value'Old).

Replacing Defensive Code

One typical benefit of contract-based programming is the removal of
defensive code in subprogram implementations. For example, the Push
operation for a stack type would need to ensure that the given stack is
not already full. The body of the routine would first check that,
explicitly, and perhaps raise an exception or set a status code. With
preconditions we can make the requirement explicit and
gnatprove will verify that the requirement holds at all call
sites.

This reduction has a number of advantages:

	The implementation is simpler, removing validation code that is often
difficult to test, makes the code more complex and leads to behaviors that
are difficult to define.

	The precondition documents the conditions under which it's correct to
call the subprogram, moving from an implementer responsibility to mitigate
invalid input to a user responsibility to fulfill the expected interface.

	Provides the means to verify that this interface is properly respected,
through code review, dynamic checking at run-time, or formal static proof.

As an example, consider a procedure Read that returns a component
value from an array. Both the Data and Index are objects visible
to the procedure so they are not formal parameters.

p.ads

 1package P is
 2
 3 type List is array (Integer range <>) of Character;
 4
 5 Data : List (1 .. 100);
 6 Index : Integer := Data'First;
 7
 8 procedure Read (V : out Character);
 9
10end P;

p.adb

 1package body P is
 2
 3 procedure Read (V : out Character) is
 4 begin
 5 if Index not in Data'Range then
 6 V := Character'First;
 7 return;
 8 end if;
 9
10 V := Data (Index);
11 Index := Index + 1;
12 end Read;
13end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Defensive
MD5: 4b4767100079b228f4f3c630d267ec53

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...

In addition to procedure Read we would also have a way to load
the array components in the first place, but we can ignore that for
the purpose of this discussion.

Procedure Read is responsible for reading an element of the array
and then incrementing the index. What should it do in case of an
invalid index? In this implementation there is defensive code that returns a
value arbitrarily chosen. We could also redesign the code to return a
status in this case, or — better — raise an exception.

An even more robust approach would be instead to ensure that this
subprogram is only called when Index is within the indexing
boundaries of Data. We can express that requirement with a
precondition (line 9).

p.ads

 1package P is
 2
 3 type List is array (Integer range <>) of Character;
 4
 5 Data : List (1 .. 100);
 6 Index : Integer := 1;
 7
 8 procedure Read (V : out Character)
 9 with Pre => Index in Data'Range;
10
11end P;

p.adb

1package body P is
2
3 procedure Read (V : out Character) is
4 begin
5 V := Data (Index);
6 Index := Index + 1;
7 end Read;
8
9end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Defensive
MD5: 9646614c34d191be51b4522c972538aa

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...

Now we don't need the defensive code in the procedure body. That's safe
because SPARK will attempt to prove statically that the check will not
fail at the point of each call.

Assuming that procedure Read is intended to be the only way to
get values from the array, in a real application (where the principles
of software engineering apply) we would take advantage of the
compile-time visibility controls that packages offer. Specifically, we
would move all the variables' declarations to the private part of the
package, or even the package body, so that client code could not
possibly access the array directly. Only procedure Read would
remain visible to clients, thus remaining the only means of accessing
the array. However, that change would entail others, and in this chapter
we are only concerned with introducing the capabilities of SPARK.
Therefore, we keep the examples as simple as possible.

Proving Absence of Run-Time Errors

Earlier we said that gnatprove will verify both
language-defined and user-defined checks. Proving that the
language-defined checks will not raise exceptions at run-time is known
as proving "Absence of Run-Time Errors" or AoRTE for short. Successful
proof of these checks is highly significant in itself.

One of the major resulting benefits is that we can deploy the final
executable with checks disabled. That has obvious performance benefits,
but it is also a safety issue. If we disable the checks we also disable
the run-time library support for them, but in that case the language
does not define what happens if indeed an exception is raised. Formally
speaking, anything could happen. We must have good reason for thinking
that exceptions cannot be raised.

This is such an important issue that proof of AoRTE can be used to comply
with the objectives of certification standards in various high-integrity
domains (for example, DO-178B/C in avionics, EN 50128 in railway, IEC
61508 in many safety-related industries, ECSS-Q-ST-80C in space, IEC
60880 in nuclear, IEC 62304 in medical, and ISO 26262 in automotive).

As a result, the quality of the program can be guaranteed to
achieve higher levels of integrity than would be possible in other
programming languages.

However, successful proof of AoRTE may require additional assertions,
especially preconditions. We can see that with procedure Increment, the
procedure that takes an Integer argument and increments it by one. But
of course, if the incoming value of the argument is the largest possible
positive value, the attempt to increment it would overflow, raising
Constraint_Error. (As you have likely already concluded,
Constraint_Error is the most common exception you will have to
deal with.) We added a precondition to allow only the integer values up to,
but not including, the largest positive value:

increment.ads

1procedure Increment (Value : in out Integer) with
2 Pre => Value < Integer'Last,
3 Post => Value = Value'Old + 1;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_5
MD5: b879dcff91cb4fbce5501474b7f2e732

Prover output

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...

Prove it, then comment-out the precondition and try proving it again.
Not only will gnatprove tell us what is wrong, it will
suggest a solution as well.

Without the precondition the check it provides would have to be
implemented as defensive code in the body. One or the other is critical
here, but note that we should never need both.

Proving Abstract Properties

The postcondition on Increment expresses what is, in fact, a unit-level
requirement. Successfully proving such requirements is another
significant robustness and cost benefit. Together with the proofs for
initialization and AoRTE, these proofs ensure program integrity, that
is, the program executes within safe boundaries: the control flow of the
program is correctly programmed and cannot be circumvented through
run-time errors, and data cannot be corrupted.

We can go even further. We can use contracts to express arbitrary
abstract properties when such exist. Safety and security properties, for
instance, could be expressed as postconditions and then proven by
gnatprove.

For example, imagine we have a procedure to move a train to a new
position on the track, and we want to do so safely, without leading to a
collision with another train. Procedure Move, therefore, takes
two inputs: a train identifier specifying which train to move, and the
intended new position. The procedure's output is a value indicating a
motion command to be given to the train in order to go to that new
position. If the train cannot go to that new position safely the output
command is to stop the train. Otherwise the command is for the train to
continue at an indicated speed:

type Move_Result is (Full_Speed, Slow_Down, Keep_Going, Stop);

procedure Move
 (Train : in Train_Id;
 New_Position : in Train_Position;
 Result : out Move_Result)
with
 Pre => Valid_Id (Train) and
 Valid_Move (Trains (Train), New_Position) and
 At_Most_One_Train_Per_Track and
 Safe_Signaling,
 Post => At_Most_One_Train_Per_Track and
 Safe_Signaling;

function At_Most_One_Train_Per_Track return Boolean;

function Safe_Signaling return Boolean;

The preconditions specify that, given a safe initial state and a valid
move, the result of the call will also be a safe state: there will be at
most one train per track section and the track signaling system will not
allow any unsafe movements.

Final Comments

Make sure you understand that gnatprove does not attempt to
prove the program correct as a whole. It attempts to prove
language-defined and user-defined assertions about parts of the program,
especially individual routines and calls to those routines. Furthermore,
gnatprove proves the routines correct only to the extent that
the user-defined assertions correctly and sufficiently describe and
constrain the implementation of the corresponding routines.

Although we are not proving whole program correctness, as you will have
seen — and done — we can prove properties than make our
software far more robust and bug-free than is possible otherwise. But in
addition, consider what proving the unit-level requirements for your
procedures and functions would do for the cost of unit testing and
system integration. The tests would pass the first time.

However, within the scope of what SPARK can do, not everything can be
proven. In some cases that is because the software behavior is not
amenable to expression as boolean conditions (for example, a mouse
driver). In other cases the source code is beyond the capabilities of
the analyzers that actually do the mathematical proof. In these cases
the combination of proof and actual test is appropriate, and still less
expensive that testing alone.

There is, of course, much more to be said about what can be done with
SPARK and gnatprove. Those topics are reserved for the
Introduction to SPARK course.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html

C to Ada Translation Patterns

Naming conventions and casing considerations

One question that may arise relatively soon when converting from C to
Ada is the style of source code presentation. The Ada language doesn't
impose any particular style and for many reasons, it may seem attractive
to keep a C-like style — for example, camel casing — to the
Ada program.

However, the code in the Ada language standard, most third-party code,
and the libraries provided by GNAT follow a specific style for
identifiers and reserved words. Using a different style for the rest of
the program leads to inconsistencies, thereby decreasing readability and
confusing automatic style checkers. For those reasons, it's usually
advisable to adopt the Ada style — in which each identifier starts
with an upper case letter, followed by lower case letters (or digits),
with an underscore separating two "distinct" words within the
identifier. Acronyms within identifiers are in upper case. For example,
there is a language-defined package named Ada.Text_IO. Reserved words
are all lower case.

Following this scheme doesn't preclude adding additional,
project-specific rules.

Manually interfacing C and Ada

Before even considering translating code from C to Ada, it's worthwhile to
evaluate the possibility of keeping a portion of the C code intact, and only
translating selected modules to Ada. This is a necessary evil when introducing
Ada to an existing large C codebase, where re-writing the entire code upfront
is not practical nor cost-effective.

Fortunately, Ada has a dedicated set of features for interfacing with other
languages. The Interfaces package hierarchy and the pragmas
Convention, Import, and Export allow you to make
inter-language calls while observing proper data representation for each
language.

Let's start with the following C code:

[C]

call.c

1#include <stdio.h>
2
3struct my_struct {
4 int A, B;
5};
6
7void call (struct my_struct *p) {
8 printf ("%d", p->A);
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct_C
MD5: 67053ec329fa4dfcbd8d6125589b9fcb

To call that function from Ada, the Ada compiler requires a description of the
data structure to pass as well as a description of the function itself. To
capture how the C struct my_struct is represented, we can use the
following record along with a pragma Convention. The pragma directs the
compiler to lay out the data in memory the way a C compiler would.

[Ada]

use_my_struct.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Interfaces.C;
 3
 4procedure Use_My_Struct is
 5
 6 type my_struct is record
 7 A : Interfaces.C.int;
 8 B : Interfaces.C.int;
 9 end record;
10 pragma Convention (C, my_struct);
11
12 V : my_struct := (A => 1, B => 2);
13begin
14 Put_Line ("V = ("
15 & Interfaces.C.int'Image (V.A)
16 & Interfaces.C.int'Image (V.B)
17 & ")");
18end Use_My_Struct;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct_Ada
MD5: d19942018679df6fbab99f1c6bfdebc8

Runtime output

V = (1 2)

Describing a foreign subprogram call to Ada code is called binding and it is
performed in two stages. First, an Ada subprogram specification equivalent to
the C function is coded. A C function returning a value maps to an Ada
function, and a void function maps to an Ada procedure. Then, rather than
implementing the subprogram using Ada code, we use a pragma Import:

procedure Call (V : my_struct);
pragma Import (C, Call, "call"); -- Third argument optional

The Import pragma specifies that whenever Call is invoked by Ada
code, it should invoke the Call function with the C calling convention.

And that's all that's necessary. Here's an example of a call to Call:

[Ada]

use_my_struct.adb

 1with Interfaces.C;
 2
 3procedure Use_My_Struct is
 4
 5 type my_struct is record
 6 A : Interfaces.C.int;
 7 B : Interfaces.C.int;
 8 end record;
 9 pragma Convention (C, my_struct);
10
11 procedure Call (V : my_struct);
12 pragma Import (C, Call, "call"); -- Third argument optional
13
14 V : my_struct := (A => 1, B => 2);
15begin
16 Call (V);
17end Use_My_Struct;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct
MD5: 9b54edadd406c7f5a2b9f8b8f82a4a88

Building and Debugging mixed language code

The easiest way to build an application using mixed C / Ada code is to create
a simple project file for gprbuild and specify C as an additional
language. By default, when using gprbuild we only compile Ada source
files. To compile C code files as well, we use the Languages attribute and
specify c as an option, as in the following example of a project file named
default.gpr:

project Default is

 for Languages use ("ada", "c");
 for Main use ("main.adb");

end Default;

Then, we use this project file to build the application by simply calling
gprbuild. Alternatively, we can specify the project file on the
command-line with the -P option — for example,
gprbuild -P default.gpr. In both cases, gprbuild compiles all C
source-code file found in the directory and links the corresponding object
files to build the executable.

In order to include debug information, you can use gprbuild -cargs -g. This
option adds debug information based on both C and Ada code to the executable.
Alternatively, you can specify a Builder package in the project file and
include global compilation switches for each language using the
Global_Compilation_Switches attribute. For example:

project Default is

 for Languages use ("ada", "c");
 for Main use ("main.adb");

 package Builder is
 for Global_Compilation_Switches ("Ada") use ("-g");
 for Global_Compilation_Switches ("C") use ("-g");
 end Builder;

end Default;

In this case, you can simply run gprbuild -P default.gpr to build the
executable.

To debug the executable, you can use programs such as gdb or
ddd, which are suitable for debugging both C and Ada source-code. If
you prefer a complete IDE, you may want to look into GNAT Studio,
which supports building and debugging an application within a single
environment, and remotely running applications loaded to various embedded
devices. You can find more information about gprbuild and
GNAT Studio in the
Introduction to GNAT Toolchain
course.

Automatic interfacing

It may be useful to start interfacing Ada and C by using automatic binding
generators. These can be done either by invoking gcc
-fdump-ada-spec option (to generate an Ada binding to a C header file) or
-gnatceg option (to generate a C binding to an Ada specification file). For
example:

gcc -c -fdump-ada-spec my_header.h
gcc -c -gnatceg spec.ads

The level of interfacing is very low level and typically requires either
massaging (changing the generated files) or wrapping (calling the generated
files from a higher level interface). For example, numbers bound from C to Ada
are only standard numbers where user-defined types may be desirable. C uses a
lot of by-pointer parameters which may be better replaced by other parameter
modes, etc.

However, the automatic binding generator helps having a starting point which
ensures compatibility of the Ada and the C code.

Using Arrays in C interfaces

It is relatively straightforward to pass an array from Ada to C. In particular,
with the GNAT compiler, passing an array is equivalent to passing a pointer to
its first element. Of course, as there's no notion of boundaries in C, the
length of the array needs to be passed explicitly. For example:

[C]

p.h

1void p (int * a, int length);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_1
MD5: 123353e301a3d43016d2799855e6732a

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 procedure P (V : Arr; Length : Integer);
 5 pragma Import (C, P);
 6
 7 X : Arr (5 .. 15);
 8begin
 9 P (X, X'Length);
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_1
MD5: 9bfbc0f31da4554a1e1dea1ba2b1d305

The other way around — that is, retrieving an array that has been
creating on the C side — is more difficult. Because C doesn't explicitly
carry boundaries, they need to be recreated in some way.

The first option is to actually create an Ada array without boundaries. This is
the most flexible, but also the least safe option. It involves creating an
array with indices over the full range of Integer without ever creating
it from Ada, but instead retrieving it as an access from C. For example:

[C]

f.h

1int * f ();

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_2
MD5: 19e33efb6d7d46778b88baa2709111e5

[Ada]

main.adb

1procedure Main is
2 type Arr is array (Integer) of Integer;
3 type Arr_A is access all Arr;
4
5 function F return Arr_A;
6 pragma Import (C, F);
7begin
8 null;
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_2
MD5: b52213bcdd8db5e8abfcb8effabb84df

Note that Arr is a constrained type (it doesn't have the range <>
notation for indices). For that reason, as it would be for C, it's possible to
iterate over the whole range of integer, beyond the memory actually allocated
for the array.

A somewhat safer way is to overlay an Ada array over the C one. This requires
having access to the length of the array. This time, let's consider two cases,
one with an array and its size accessible through functions, another one on
global variables. This time, as we're using an overlay, the function will be
directly mapped to an Ada function returning an address:

[C]

fg.h

1int * f_arr (void);
2int f_size (void);
3
4int * g_arr;
5int g_size;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_3
MD5: b315ec2e5d9fdd297ba295ccbae910bc

[Ada]

fg.ads

 1with System;
 2
 3package Fg is
 4
 5 type Arr is array (Integer range <>) of Integer;
 6
 7 function F_Arr return System.Address;
 8 pragma Import (C, F_Arr, "f_arr");
 9
10 function F_Size return Integer;
11 pragma Import (C, F_Size, "f_size");
12
13 F : Arr (0 .. F_Size - 1) with Address => F_Arr;
14
15 G_Size : Integer;
16 pragma Import (C, G_Size, "g_size");
17
18 G_Arr : Arr (0 .. G_Size - 1);
19 pragma Import (C, G_Arr, "g_arr");
20
21end Fg;

main.adb

1with Fg;
2
3procedure Main is
4begin
5 null;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_3
MD5: 5c74f9bca93520ecf85a2010760cc2f8

With all solutions though, importing an array from C is a relatively unsafe
pattern, as there's only so much information on the array as there would be on
the C side in the first place. These are good places for careful peer reviews.

By-value vs. by-reference types

When interfacing Ada and C, the rules of parameter passing are a bit different
with regards to what's a reference and what's a copy. Scalar types and pointers
are passed by value, whereas record and arrays are (almost) always passed by
reference. However, there may be cases where the C interface also passes values
and not pointers to objects. Here's a slightly modified version of a previous
example to illustrate this point:

[C]

call.c

1#include <stdio.h>
2
3struct my_struct {
4 int A, B;
5};
6
7void call (struct my_struct p) {
8 printf ("%d", p.A);
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Param_By_Value_C
MD5: 42b6e329c5dbfcae368078ca7635341f

In Ada, a type can be modified so that parameters of this type can always be
passed by copy.

[Ada]

main.adb

 1with Interfaces.C;
 2
 3procedure Main is
 4 type my_struct is record
 5 A : Interfaces.C.int;
 6 B : Interfaces.C.int;
 7 end record
 8 with Convention => C_Pass_By_Copy;
 9
10 procedure Call (V : my_struct);
11 pragma Import (C, Call, "call");
12begin
13 null;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Param_By_Value_Ada
MD5: 16e97033bdffb2bacc0cf3322c019a94

Note that this cannot be done at the subprogram declaration level, so if there
is a mix of by-copy and by-reference calls, two different types need to be
used on the Ada side.

Naming and prefixes

Because of the absence of namespaces, any global name in C tends to be very
long. And because of the absence of overloading, they can even encode type
names in their type.

In Ada, the package is a namespace — two entities declared in two
different packages are clearly identified and can always be specifically
designated. The C names are usually a good indication of the names of the
future packages and should be stripped — it is possible to use the
full name if useful. For example, here's how the following declaration and
call could be translated:

[C]

reg_interface.h

1void registerInterface_Initialize (int size);

reg_interface_test.c

1#include "reg_interface.h"
2
3int main(int argc, const char * argv[])
4{
5 registerInterface_Initialize(15);
6
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Namespaces
MD5: e8c25da648a2e8662d97a9a5b863a5bc

[Ada]

register_interface.ads

1package Register_Interface is
2 procedure Initialize (Size : Integer)
3 with Import => True,
4 Convention => C,
5 External_Name => "registerInterface_Initialize";
6
7end Register_Interface;

main.adb

1with Register_Interface;
2
3procedure Main is
4begin
5 Register_Interface.Initialize (15);
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Namespaces
MD5: 934edd7d3c74d058f862a786582a32c0

Note that in the above example, a use clause on
Register_Interface could allow us to omit the prefix.

Pointers

The first thing to ask when translating pointers from C to Ada is: are they
needed in the first place? In Ada, pointers (or access types) should only be
used with complex structures that cannot be allocated at run-time — think
of a linked list or a graph for example. There are many other situations that
would need a pointer in C, but do not in Ada, in particular:

	Arrays, even when dynamically allocated

	Results of functions

	Passing large structures as parameters

	Access to registers

	... others

This is not to say that pointers aren't used in these cases but, more often
than not, the pointer is hidden from the user and automatically handled by the
code generated by the compiler; thus avoiding possible mistakes from being
made. Generally speaking, when looking at C code, it's good practice to start
by analyzing how many pointers are used and to translate as many as possible
into pointerless Ada structures.

Here are a few examples of such patterns — additional examples can be
found throughout this document.

Dynamically allocated arrays can be directly allocated on the stack:

[C]

array_decl.c

1#include <stdlib.h>
2
3int main() {
4 int *a = malloc(sizeof(int) * 10);
5
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_Stack_Alloc_C
MD5: a922c3e163494339d6773c6ab1256549

[Ada]

main.adb

1procedure Main is
2 type Arr is array (Integer range <>) of Integer;
3 A : Arr (0 .. 9);
4begin
5 null;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_Stack_Alloc_Ada
MD5: 2e4196c2a2016244a48de153beaa2b49

It's even possible to create a such an array within a structure, provided that
the size of the array is known when instantiating this object, using a type
discriminant:

[C]

array_decl.c

 1#include <stdlib.h>
 2
 3typedef struct {
 4 int * a;
 5} S;
 6
 7int main(int argc, const char * argv[])
 8{
 9 S v;
10
11 v.a = malloc(sizeof(int) * 10);
12
13 return 0;
14}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Struct_Array_Stack_Alloc_C
MD5: f8e5a877977387986b3e2353834a2989

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Integer) is record
 5 A : Arr (0 .. Last);
 6 end record;
 7
 8 V : S (9);
 9begin
10 null;
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Struct_Array_Stack_Alloc_Ada
MD5: 955c704bdbe4b2b788e4a790ade12df7

With regards to parameter passing, usage mode (input / output) should be
preferred to implementation mode (by copy or by reference). The Ada compiler
will automatically pass a reference when needed. This works also for smaller
objects, so that the compiler will copy in an out when needed. One of the
advantages of this approach is that it clarifies the nature of the object: in
particular, it differentiates between arrays and scalars. For example:

[C]

p.h

1void p (int * a, int * b);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_In_Out_C
MD5: c2c936dd3afc4850c5869e4db73bb36b

[Ada]

array_types.ads

1package Array_Types is
2 type Arr is array (Integer range <>) of Integer;
3
4 procedure P (A : in out Integer; B : in out Arr);
5end Array_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_In_Out_Ada
MD5: cf8e51391c9fd8608183c9dae2aa2802

Most of the time, access to registers end up in some specific structures
being mapped onto a specific location in memory. In Ada, this can be achieved
through an Address clause associated to a variable, for example:

[C]

test_c.c

1int main(int argc, const char * argv[])
2{
3 int * r = (int *)0xFFFF00A0;
4
5 return 0;
6}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Address_C
MD5: e810538d72d835a04736fcaf732f1930

[Ada]

test.adb

1with System;
2
3procedure Test is
4 R : Integer with Address => System'To_Address (16#FFFF00A0#);
5begin
6 null;
7end Test;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Address_Ada
MD5: 1263f7289cec6673f19d88bffbeead48

These are some of the most common misuse of pointers in Ada. Previous sections
of the document deal with specifically using access types if absolutely
necessary.

Bitwise Operations

Bitwise operations such as masks and shifts in Ada should be relatively rarely
needed, and, when translating C code, it's good practice to consider
alternatives. In a lot of cases, these operations are used to insert several
pieces of data into a larger structure. In Ada, this can be done by describing
the structure layout at the type level through representation clauses, and then
accessing this structure as any other.

Consider the case of using a C primitive type as a container for single bit
boolean flags. In C, this would be done through masks, e.g.:

[C]

flags.c

 1#define FLAG_1 0b0001
 2#define FLAG_2 0b0010
 3#define FLAG_3 0b0100
 4#define FLAG_4 0b1000
 5
 6int main(int argc, const char * argv[])
 7{
 8 int value = 0;
 9
10 value |= FLAG_2 | FLAG_4;
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Flags_C
MD5: cf903dee1fb1d78d74dc42b66adcdbd5

In Ada, the above can be represented through a Boolean array of enumerate
values:

[Ada]

main.adb

 1procedure Main is
 2 type Values is (Flag_1, Flag_2, Flag_3, Flag_4);
 3 type Value_Array is array (Values) of Boolean
 4 with Pack;
 5
 6 Value : Value_Array :=
 7 (Flag_2 => True,
 8 Flag_4 => True,
 9 others => False);
10begin
11 null;
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Flags_Ada
MD5: c92c8532763469f5e4d1027df2bd6a6b

Note the Pack directive for the array, which requests that the array
takes as little space as possible.

It is also possible to map records on memory when additional control over the
representation is needed or more complex data are used:

[C]

struct_map.c

1int main(int argc, const char * argv[])
2{
3 int value = 0;
4
5 value = (2 << 1) | 1;
6
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Rec_Map_C
MD5: 16606f11ab3e9c86d3e1d88ac9c3f37f

[Ada]

main.adb

 1procedure Main is
 2 type Value_Rec is record
 3 V1 : Boolean;
 4 V2 : Integer range 0 .. 3;
 5 end record;
 6
 7 for Value_Rec use record
 8 V1 at 0 range 0 .. 0;
 9 V2 at 0 range 1 .. 2;
10 end record;
11
12 Value : Value_Rec := (V1 => True, V2 => 2);
13begin
14 null;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Rec_Map_Ada
MD5: 52078824814b0d83789dd837ac2e86bf

The benefit of using Ada structure instead of bitwise operations is threefold:

	The code is simpler to read / write and less error-prone

	Individual fields are named

	The compiler can run consistency checks (for example, check that the value
indeed fit in the expected size).

Note that, in cases where bitwise operators are needed, Ada provides modular
types with and, or and xor operators. Further shift
operators can also be provided upon request through a pragma. So the
above could also be literally translated to:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 procedure Main is
 4 type Value_Type is mod 2 ** 32;
 5 pragma Provide_Shift_Operators (Value_Type);
 6
 7 Value : Value_Type;
 8 begin
 9 Value := Shift_Left (2, 1) or 1;
10 Put_Line ("Value = " & Value_Type'Image (Value));
11 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitwise_Ops_Ada
MD5: 22cb824a0c99bd1a9092dc5f90e9d7fc

Runtime output

Value = 5

Mapping Structures to Bit-Fields

In the previous section, we've seen how to perform bitwise operations. In this
section, we look at how to interpret a data type as a bit-field and perform
low-level operations on it.

In general, you can create a bit-field from any arbitrary data type. First, we
declare a bit-field type like this:

[Ada]

type Bit_Field is array (Natural range <>) of Boolean with Pack;

As we've seen previously, the Pack aspect declared at the end of the
type declaration indicates that the compiler should optimize for size. We must
use this aspect to be able to interpret data types as a bit-field.

Then, we can use the Size and the Address attributes of an
object of any type to declare a bit-field for this object. We've discussed the
Size attribute earlier in this course.

The Address attribute indicates the address in memory of that object.
For example, assuming we've declare a variable V, we can declare an
actual bit-field object by referring to the Address attribute of
V and using it in the declaration of the bit-field, as shown here:

[Ada]

B : Bit_Field (0 .. V'Size - 1) with Address => V'Address;

Note that, in this declaration, we're using the Address attribute of
V for the Address aspect of B.

This technique is called overlays for serialization. Now, any operation that we
perform on B will have a direct impact on V, since both are using
the same memory location.

The approach that we use in this section relies on the Address aspect.
Another approach would be to use unchecked conversions, which we'll
discuss in the next section.

We should add the Volatile aspect to the declaration to cover the case
when both objects can still be changed independently — they need to be
volatile, otherwise one change might be missed. This is the updated
declaration:

[Ada]

B : Bit_Field (0 .. V'Size - 1) with Address => V'Address, Volatile;

Using the Volatile aspect is important at high level of optimizations.
You can find further details about this aspect in the section about the
Volatile and Atomic aspects.

Another important aspect that should be added is Import. When used in
the context of object declarations, it'll avoid default initialization which
could overwrite the existing content while creating the overlay — see an
example in the admonition below. The declaration now becomes:

B : Bit_Field (0 .. V'Size - 1)
 with
 Address => V'Address, Import, Volatile;

Let's look at a simple example:

[Ada]

simple_bitfield.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Bitfield is
 4 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 5
 6 V : Integer := 0;
 7 B : Bit_Field (0 .. V'Size - 1)
 8 with Address => V'Address, Import, Volatile;
 9begin
10 B (2) := True;
11 Put_Line ("V = " & Integer'Image (V));
12end Simple_Bitfield;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Ada
MD5: 193a2db91619426a145cd267f873145f

Runtime output

V = 4

In this example, we first initialize V with zero. Then, we use the
bit-field B and set the third element (B (2)) to True.
This automatically sets bit #3 of V to 1. Therefore, as expected,
the application displays the message V = 4, which corresponds to
22 = 4.

Note that, in the declaration of the bit-field type above, we could also have
used a positive range. For example:

type Bit_Field is array (Positive range <>) of Boolean with Pack;

B : Bit_Field (1 .. V'Size)
 with Address => V'Address, Import, Volatile;

The only difference in this case is that the first bit is B (1) instead
of B (0).

In C, we would rely on bit-shifting and masking to set that specific bit:

[C]

bitfield.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v = 0;
 6
 7 v = v | (1 << 2);
 8
 9 printf("v = %d\n", v);
10
11 return 0;
12}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_C
MD5: 98557f80ea3bc1b081ae2688f844cbe1

Runtime output

v = 4

Important

Ada has the concept of default initialization. For example, you may set the
default value of record components:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Rec is record
 6 X : Integer := 10;
 7 Y : Integer := 11;
 8 end record;
 9
10 R : Rec;
11begin
12 Put_Line ("R.X = " & Integer'Image (R.X));
13 Put_Line ("R.Y = " & Integer'Image (R.Y));
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Default_Record_Type
MD5: 010877f4d20302a1abcb9562c9e36a38

Runtime output

R.X = 10
R.Y = 11

In the code above, we don't explicitly initialize the components of
R, so they still have the default values 10 and 11, which are
displayed by the application.

Likewise, the Default_Value aspect can be used to specify the
default value in other kinds of type declarations. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Percentage is range 0 .. 100
 6 with Default_Value => 10;
 7
 8 P : Percentage;
 9begin
10 Put_Line ("P = " & Percentage'Image (P));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Default_Value_Type
MD5: b3715f7cba0cbefa433bac529d95e395

Runtime output

P = 10

When declaring an object whose type has a default value, the object will
automatically be initialized with the default value. In the example above,
P is automatically initialized with 10, which is the default value
of the Percentage type.

Some types have an implicit default value. For example, access types have a
default value of null.

As we've just seen, when declaring objects for types with associated
default values, automatic initialization will happen. This can also happens
when creating an overlay with the Address aspect. The default value
is then used to overwrite the content at the memory location indicated by
the address. However, in most situations, this isn't the behavior we
expect, since overlays are usually created to analyze and manipulate
existing values. Let's look at an example where this happens:

[Ada]

p.ads

1package P is
2
3 type Unsigned_8 is mod 2 ** 8 with Default_Value => 0;
4
5 type Byte_Field is array (Natural range <>) of Unsigned_8;
6
7 procedure Display_Bytes_Increment (V : in out Integer);
8end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display_Bytes_Increment (V : in out Integer) is
 6 BF : Byte_Field (1 .. V'Size / 8)
 7 with Address => V'Address, Volatile;
 8 begin
 9 for B of BF loop
10 Put_Line ("Byte = " & Unsigned_8'Image (B));
11 end loop;
12 Put_Line ("Now incrementing...");
13 V := V + 1;
14 end Display_Bytes_Increment;
15
16end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Main is
 6 V : Integer := 10;
 7begin
 8 Put_Line ("V = " & Integer'Image (V));
 9 Display_Bytes_Increment (V);
10 Put_Line ("V = " & Integer'Image (V));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Overlay_Default_Init_Overwrite
MD5: 04994b2b4c98e9232a155515dc0c365a

Build output

p.adb:7:14: warning: default initialization of "Bf" may modify "V" [-gnatwo]
p.adb:7:14: warning: use pragma Import for "Bf" to suppress initialization (RM B.1(24)) [-gnatwo]

Runtime output

V = 10
Byte = 0
Byte = 0
Byte = 0
Byte = 0
Now incrementing...
V = 1

In this example, we expect Display_Bytes_Increment to display each
byte of the V parameter and then increment it by one. Initially,
V is set to 10, and the call to Display_Bytes_Increment
should change it to 11. However, due to the default value associated to the
Unsigned_8 type — which is set to 0 — the value of
V is overwritten in the declaration of BF (in
Display_Bytes_Increment). Therefore, the value of V is 1
after the call to Display_Bytes_Increment. Of course, this is not
the behavior that we originally intended.

Using the Import aspect solves this problem. This aspect tells the
compiler to not apply default initialization in the declaration because the
object is imported. Let's look at the corrected example:

[Ada]

p.ads

1package P is
2
3 type Unsigned_8 is mod 2 ** 8 with Default_Value => 0;
4
5 type Byte_Field is array (Natural range <>) of Unsigned_8;
6
7 procedure Display_Bytes_Increment (V : in out Integer);
8end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display_Bytes_Increment (V : in out Integer) is
 6 BF : Byte_Field (1 .. V'Size / 8)
 7 with Address => V'Address, Import, Volatile;
 8 begin
 9 for B of BF loop
10 Put_Line ("Byte = " & Unsigned_8'Image (B));
11 end loop;
12 Put_Line ("Now incrementing...");
13 V := V + 1;
14 end Display_Bytes_Increment;
15
16end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Main is
 6 V : Integer := 10;
 7begin
 8 Put_Line ("V = " & Integer'Image (V));
 9 Display_Bytes_Increment (V);
10 Put_Line ("V = " & Integer'Image (V));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Overlay_Default_Init_Import
MD5: e269d9d3c06c0f6c69ead16e7d2ba70b

Runtime output

V = 10
Byte = 10
Byte = 0
Byte = 0
Byte = 0
Now incrementing...
V = 11

This unwanted side-effect of the initialization by the Default_Value
aspect that we've just seen can also happen in these cases:

	when we set a default value for components of a record type declaration,

	when we use the Default_Component_Value aspect for array types, or

	when we set use the Initialize_Scalars pragma for a package.

Again, using the Import aspect when declaring the overlay eliminates
this side-effect.

We can use this pattern for objects of more complex data types like arrays or
records. For example:

[Ada]

int_array_bitfield.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Int_Array_Bitfield is
 4 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 5
 6 A : array (1 .. 2) of Integer := (others => 0);
 7 B : Bit_Field (0 .. A'Size - 1)
 8 with Address => A'Address, Import, Volatile;
 9begin
10 B (2) := True;
11 for I in A'Range loop
12 Put_Line ("A (" & Integer'Image (I)
13 & ")= " & Integer'Image (A (I)));
14 end loop;
15end Int_Array_Bitfield;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Int_Array_Ada
MD5: 478ba4ce4f5886566556bddb58245eb9

Runtime output

A (1)= 4
A (2)= 0

In the Ada example above, we're using the bit-field to set bit #3 of the first
element of the array (A (1)). We could set bit #4 of the second element
by using the size of the data type (in this case, Integer'Size):

[Ada]

B (Integer'Size + 3) := True;

In C, we would select the specific array position and, again, rely on
bit-shifting and masking to set that specific bit:

[C]

bitfield_int_array.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int i;
 6 int a[2] = {0, 0};
 7
 8 a[0] = a[0] | (1 << 2);
 9
10 for (i = 0; i < 2; i++)
11 {
12 printf("a[%d] = %d\n", i, a[i]);
13 }
14
15 return 0;
16}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Int_Array_C
MD5: 4dc3fe77e8260ff3b449c8779745a63c

Runtime output

a[0] = 4
a[1] = 0

Since we can use this pattern for any arbitrary data type, this allows us to
easily create a subprogram to serialize data types and, for example, transmit
complex data structures as a bitstream. For example:

[Ada]

serializer.ads

1package Serializer is
2
3 type Bit_Field is array (Natural range <>) of Boolean with Pack;
4
5 procedure Transmit (B : Bit_Field);
6
7end Serializer;

serializer.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serializer is
 4
 5 procedure Transmit (B : Bit_Field) is
 6
 7 procedure Show_Bit (V : Boolean) is
 8 begin
 9 case V is
10 when False => Put ("0");
11 when True => Put ("1");
12 end case;
13 end Show_Bit;
14
15 begin
16 Put ("Bits: ");
17 for E of B loop
18 Show_Bit (E);
19 end loop;
20 New_Line;
21 end Transmit;
22
23end Serializer;

my_recs.ads

1package My_Recs is
2
3 type Rec is record
4 V : Integer;
5 S : String (1 .. 3);
6 end record;
7
8end My_Recs;

main.adb

 1with Serializer; use Serializer;
 2with My_Recs; use My_Recs;
 3
 4procedure Main is
 5 R : Rec := (5, "abc");
 6 B : Bit_Field (0 .. R'Size - 1)
 7 with Address => R'Address, Import, Volatile;
 8begin
 9 Transmit (B);
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Serialization_ada
MD5: 5c9c2d18bab7c78456d1d795c6334cd9

Build output

main.adb:9:14: warning: volatile actual passed by copy (RM C.6(19)) [enabled by default]

Runtime output

Bits: 1010000000000000000000000000000010000110010001101100011000000000

In this example, the Transmit procedure from Serializer package
displays the individual bits of a bit-field. We could have used this strategy
to actually transmit the information as a bitstream. In the main application,
we call Transmit for the object R of record type Rec.
Since Transmit has the bit-field type as a parameter, we can use it
for any type, as long as we have a corresponding bit-field representation.

In C, we interpret the input pointer as an array of bytes, and then use
shifting and masking to access the bits of that byte. Here, we use the
char type because it has a size of one byte in most platforms.

[C]

my_recs.h

1typedef struct {
2 int v;
3 char s[4];
4} rec;

serializer.h

1void transmit (void *bits, int len);

serializer.c

 1#include "serializer.h"
 2
 3#include <stdio.h>
 4#include <assert.h>
 5
 6void transmit (void *bits, int len)
 7{
 8 int i, j;
 9 char *c = (char *)bits;
10
11 assert(sizeof(char) == 1);
12
13 printf("Bits: ");
14 for (i = 0; i < len / (sizeof(char) * 8); i++)
15 {
16 for (j = 0; j < sizeof(char) * 8; j++)
17 {
18 printf("%d", c[i] >> j & 1);
19 }
20 }
21 printf("\n");
22}

bitfield_serialization.c

 1#include <stdio.h>
 2
 3#include "my_recs.h"
 4#include "serializer.h"
 5
 6int main(int argc, const char * argv[])
 7{
 8 rec r = {5, "abc"};
 9
10 transmit(&r, sizeof(r) * 8);
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Serialization_C
MD5: 47f0a4efcbec9303f44d535064e5d6ce

Runtime output

Bits: 1010000000000000000000000000000010000110010001101100011000000000

Similarly, we can write a subprogram that converts a bit-field — which
may have been received as a bitstream — to a specific type. We can add a
To_Rec subprogram to the My_Recs package to convert a bit-field
to the Rec type. This can be used to convert a bitstream that we
received into the actual data type representation.

As you know, we may write the To_Rec subprogram as a procedure or as a
function. Since we need to use slightly different strategies for the
implementation, the following example has both versions of To_Rec.

This is the updated code for the My_Recs package and the Main
procedure:

[Ada]

serializer.ads

1package Serializer is
2
3 type Bit_Field is array (Natural range <>) of Boolean with Pack;
4
5 procedure Transmit (B : Bit_Field);
6
7end Serializer;

serializer.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serializer is
 4
 5 procedure Transmit (B : Bit_Field) is
 6
 7 procedure Show_Bit (V : Boolean) is
 8 begin
 9 case V is
10 when False => Put ("0");
11 when True => Put ("1");
12 end case;
13 end Show_Bit;
14
15 begin
16 Put ("Bits: ");
17 for E of B loop
18 Show_Bit (E);
19 end loop;
20 New_Line;
21 end Transmit;
22
23end Serializer;

my_recs.ads

 1with Serializer; use Serializer;
 2
 3package My_Recs is
 4
 5 type Rec is record
 6 V : Integer;
 7 S : String (1 .. 3);
 8 end record;
 9
10 procedure To_Rec (B : Bit_Field;
11 R : out Rec);
12
13 function To_Rec (B : Bit_Field) return Rec;
14
15 procedure Display (R : Rec);
16
17end My_Recs;

my_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Recs is
 4
 5 procedure To_Rec (B : Bit_Field;
 6 R : out Rec) is
 7 B_R : Rec
 8 with Address => B'Address, Import, Volatile;
 9 begin
10 -- Assigning data from overlayed record B_R to output parameter R.
11 R := B_R;
12 end To_Rec;
13
14 function To_Rec (B : Bit_Field) return Rec is
15 R : Rec;
16 B_R : Rec
17 with Address => B'Address, Import, Volatile;
18 begin
19 -- Assigning data from overlayed record B_R to local record R.
20 R := B_R;
21
22 return R;
23 end To_Rec;
24
25 procedure Display (R : Rec) is
26 begin
27 Put ("(" & Integer'Image (R.V) & ", "
28 & (R.S) & ")");
29 end Display;
30
31end My_Recs;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Serializer; use Serializer;
 3with My_Recs; use My_Recs;
 4
 5procedure Main is
 6 R1 : Rec := (5, "abc");
 7 R2 : Rec := (0, "zzz");
 8
 9 B1 : Bit_Field (0 .. R1'Size - 1)
10 with Address => R1'Address, Import, Volatile;
11begin
12 Put ("R2 = ");
13 Display (R2);
14 New_Line;
15
16 -- Getting Rec type using data from B1, which is a bit-field
17 -- representation of R1.
18 To_Rec (B1, R2);
19
20 -- We could use the function version of To_Rec:
21 -- R2 := To_Rec (B1);
22
23 Put_Line ("New bitstream received!");
24 Put ("R2 = ");
25 Display (R2);
26 New_Line;
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Deserialization_Ada
MD5: bf5cb5ef048ed1f95dba8e85275f6e32

Build output

main.adb:18:12: warning: volatile actual passed by copy (RM C.6(19)) [enabled by default]

Runtime output

R2 = (0, zzz)
New bitstream received!
R2 = (5, abc)

In both versions of To_Rec, we declare the record object B_R as
an overlay of the input bit-field. In the procedure version of To_Rec,
we then simply copy the data from B_R to the output parameter R.
In the function version of To_Rec, however, we need to declare a local
record object R, which we return after the assignment.

In C, we can interpret the input pointer as an array of bytes, and copy the
individual bytes. For example:

[C]

my_recs.h

1typedef struct {
2 int v;
3 char s[3];
4} rec;
5
6void to_r (void *bits, int len, rec *r);
7
8void display_r (rec *r);

my_recs.c

 1#include "my_recs.h"
 2
 3#include <stdio.h>
 4#include <assert.h>
 5
 6void to_r (void *bits, int len, rec *r)
 7{
 8 int i;
 9 char *c1 = (char *)bits;
10 char *c2 = (char *)r;
11
12 assert(len == sizeof(rec) * 8);
13
14 for (i = 0; i < len / (sizeof(char) * 8); i++)
15 {
16 c2[i] = c1[i];
17 }
18}
19
20void display_r (rec *r)
21{
22 printf("{%d, %c%c%c}", r->v, r->s[0], r->s[1], r->s[2]);
23}

bitfield_serialization.c

 1#include <stdio.h>
 2#include "my_recs.h"
 3
 4int main(int argc, const char * argv[])
 5{
 6 rec r1 = {5, "abc"};
 7 rec r2 = {0, "zzz"};
 8
 9 printf("r2 = ");
10 display_r (&r2);
11 printf("\n");
12
13 to_r(&r1, sizeof(r1) * 8, &r2);
14
15 printf("New bitstream received!\n");
16 printf("r2 = ");
17 display_r (&r2);
18 printf("\n");
19
20 return 0;
21}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Deserialization_C
MD5: 1c0fda773b0b681d0a4e9a57cf67d997

Runtime output

r2 = {0, zzz}
New bitstream received!
r2 = {5, abc}

Here, to_r casts both pointer parameters to pointers to char to get
a byte-aligned pointer. Then, it simply copies the data byte-by-byte.

Overlays vs. Unchecked Conversions

Unchecked conversions are another way of converting between unrelated data
types. This conversion is done by instantiating the generic
Unchecked_Conversions function for the types you want to convert. Let's
look at a simple example:

[Ada]

simple_unchecked_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Simple_Unchecked_Conversion is
 5 type State is (Off, State_1, State_2)
 6 with Size => Integer'Size;
 7
 8 for State use (Off => 0, State_1 => 32, State_2 => 64);
 9
10 function As_Integer is new Ada.Unchecked_Conversion (Source => State,
11 Target => Integer);
12
13 I : Integer;
14begin
15 I := As_Integer (State_2);
16 Put_Line ("I = " & Integer'Image (I));
17end Simple_Unchecked_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Simple_Unchecked_Conversion
MD5: 1b6058ef1919879a7d2d86be41f3b269

Runtime output

I = 64

In this example, As_Integer is an instantiation of
Unchecked_Conversion to convert between the State enumeration and
the Integer type. Note that, in order to ensure safe conversion, we're
declaring State to have the same size as the Integer type we
want to convert to.

This is the corresponding implementation using overlays:

[Ada]

simple_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Overlay is
 4 type State is (Off, State_1, State_2)
 5 with Size => Integer'Size;
 6
 7 for State use (Off => 0, State_1 => 32, State_2 => 64);
 8
 9 S : State;
10 I : Integer
11 with Address => S'Address, Import, Volatile;
12begin
13 S := State_2;
14 Put_Line ("I = " & Integer'Image (I));
15end Simple_Overlay;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Simple_Overlay
MD5: 932135a47c36c406e70b22e075afeaf2

Runtime output

I = 64

Let's look at another example of converting between different numeric formats.
In this case, we want to convert between a 16-bit fixed-point and a 16-bit
integer data type. This is how we can do it using Unchecked_Conversion:

[Ada]

fixed_int_unchecked_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Fixed_Int_Unchecked_Conversion is
 5 Delta_16 : constant := 1.0 / 2.0 ** (16 - 1);
 6 Max_16 : constant := 2 ** 15;
 7
 8 type Fixed_16 is delta Delta_16 range -1.0 .. 1.0 - Delta_16
 9 with Size => 16;
10 type Int_16 is range -Max_16 .. Max_16 - 1
11 with Size => 16;
12
13 function As_Int_16 is new Ada.Unchecked_Conversion (Source => Fixed_16,
14 Target => Int_16);
15 function As_Fixed_16 is new Ada.Unchecked_Conversion (Source => Int_16,
16 Target => Fixed_16);
17
18 I : Int_16 := 0;
19 F : Fixed_16 := 0.0;
20begin
21 F := Fixed_16'Last;
22 I := As_Int_16 (F);
23
24 Put_Line ("F = " & Fixed_16'Image (F));
25 Put_Line ("I = " & Int_16'Image (I));
26end Fixed_Int_Unchecked_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Fixed_Int_Unchecked_Conversion
MD5: 53b59ca56a5c25408d8b6e5fcb06f37a

Runtime output

F = 0.99997
I = 32767

Here, we instantiate Unchecked_Conversion for the Int_16 and
Fixed_16 types, and we call the instantiated functions explicitly. In
this case, we call As_Int_16 to get the integer value corresponding to
Fixed_16'Last.

This is how we can rewrite the implementation above using overlays:

[Ada]

fixed_int_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Fixed_Int_Overlay is
 4 Delta_16 : constant := 1.0 / 2.0 ** (16 - 1);
 5 Max_16 : constant := 2 ** 15;
 6
 7 type Fixed_16 is delta Delta_16 range -1.0 .. 1.0 - Delta_16
 8 with Size => 16;
 9 type Int_16 is range -Max_16 .. Max_16 - 1
10 with Size => 16;
11
12 I : Int_16 := 0;
13 F : Fixed_16
14 with Address => I'Address, Import, Volatile;
15begin
16 F := Fixed_16'Last;
17
18 Put_Line ("F = " & Fixed_16'Image (F));
19 Put_Line ("I = " & Int_16'Image (I));
20end Fixed_Int_Overlay;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Fixed_Int_Overlay
MD5: ee86e3d10266f8c8c96311595b6624ec

Runtime output

F = 0.99997
I = 32767

Here, the conversion to the integer value is implicit, so we don't need to call
a conversion function.

Using Unchecked_Conversion has the advantage of making it clear that a
conversion is happening, since the conversion is written explicitly in the
code. With overlays, that conversion is automatic and therefore implicit. In
that sense, using an unchecked conversion is a cleaner and safer approach.
On the other hand, an unchecked conversion requires a copy, so it's less
efficient than overlays, where no copy is performed — because one change
in the source object is automatically reflected in the target object (and
vice-versa). In the end, the choice between unchecked conversions and overlays
depends on the level of performance that you want to achieve.

Also note that an unchecked conversion only has defined behavior
when instantiated for constrained types. For example, we shouldn't use this
kind of conversion:

Ada.Unchecked_Conversion (Source => String,
 Target => Integer);

Although this compiles, the behavior will only be well-defined in those cases
when Source'Size = Target'Size. Therefore, instead of using an
unconstrained type for Source, we should use a subtype that matches this
expectation:

subtype Integer_String is String (1 .. Integer'Size / Character'Size);

function As_Integer is new
 Ada.Unchecked_Conversion (Source => Integer_String,
 Target => Integer);

Similarly, in order to rewrite the examples using bit-fields that we've
seen in the previous section, we cannot simply instantiate
Unchecked_Conversion with the Target indicating the
unconstrained bit-field, such as:

Ada.Unchecked_Conversion (Source => Integer,
 Target => Bit_Field);

Instead, we have to declare a subtype for the specific range we're interested
in. This is how we can rewrite one of the previous examples:

[Ada]

simple_bitfield_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Simple_Bitfield_Conversion is
 5 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 6
 7 V : Integer := 4;
 8
 9 -- Declaring subtype that takes the size of V into account.
10 --
11 subtype Integer_Bit_Field is Bit_Field (0 .. V'Size - 1);
12
13 -- NOTE: we could also use the Integer type in the declaration:
14 --
15 -- subtype Integer_Bit_Field is Bit_Field (0 .. Integer'Size - 1);
16 --
17
18 -- Using the Integer_Bit_Field subtype as the target
19 function As_Bit_Field is new
20 Ada.Unchecked_Conversion (Source => Integer,
21 Target => Integer_Bit_Field);
22
23 B : Integer_Bit_Field;
24begin
25 B := As_Bit_Field (V);
26
27 Put_Line ("V = " & Integer'Image (V));
28end Simple_Bitfield_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Conversion
MD5: 46ead7e5f3da8f261770811d450453e7

Runtime output

V = 4

In this example, we first declare the subtype Integer_Bit_Field as a
bit-field with a length that fits the V variable we want to convert to.
Then, we can use that subtype in the instantiation of
Unchecked_Conversion.

Footnotes

Handling Variability and Re-usability

Understanding static and dynamic variability

It is common to see embedded software being used in a variety of configurations
that require small changes to the code for each instance. For example, the same
application may need to be portable between two different architectures (ARM
and x86), or two different platforms with different set of devices available.
Maybe the same application is used for two different generations of the
product, so it needs to account for absence or presence of new features, or
it's used for different projects which may select different components or
configurations. All these cases, and many others, require variability in the
software in order to ensure its reusability.

In C, variability is usually achieved through macros and function pointers, the
former being tied to static variability (variability in different
builds) the latter to dynamic variability (variability within the same build
decided at run-time).

Ada offers many alternatives for both techniques, which aim at structuring
possible variations of the software. When Ada isn't enough, the GNAT
compilation system also provides a layer of capabilities, in particular
selection of alternate bodies.

If you're familiar with object-oriented programming (OOP) — supported in
languages such as C++ and Java —, you might also be interested in knowing
that OOP is supported by Ada and can be used to implement variability. This
should, however, be used with care, as OOP brings its own set of problems, such
as loss of efficiency — dispatching calls can't be inlined and require
one level of indirection — or loss of analyzability — the target
of a dispatching call isn't known at run time. As a rule of thumb, OOP should
be considered only for cases of dynamic variability, where several versions of
the same object need to exist concurrently in the same application.

Handling variability & reusability statically

Genericity

One usage of C macros involves the creation of functions that works regardless
of the type they're being called upon. For example, a swap macro may look like:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#define SWAP(t, a, b) ({\
 5 t tmp = a; \
 6 a = b; \
 7 b = tmp; \
 8 })
 9
10int main()
11{
12 int a = 10;
13 int b = 42;
14
15 printf("a = %d, b = %d\n", a, b);
16
17 SWAP (int, a, b);
18
19 printf("a = %d, b = %d\n", a, b);
20
21 return 0;
22}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Swap_C
MD5: 96d0e8ce9ae985e4de9ed64a0f0961f5

Runtime output

a = 10, b = 42
a = 42, b = 10

Ada offers a way to declare this kind of functions as a generic, that is, a
function that is written after static arguments, such as a parameter:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 generic
 6 type A_Type is private;
 7 procedure Swap (Left, Right : in out A_Type);
 8
 9 procedure Swap (Left, Right : in out A_Type) is
10 Temp : constant A_Type := Left;
11 begin
12 Left := Right;
13 Right := Temp;
14 end Swap;
15
16 procedure Swap_I is new Swap (Integer);
17
18 A : Integer := 10;
19 B : Integer := 42;
20
21begin
22 Put_Line ("A = "
23 & Integer'Image (A)
24 & ", B = "
25 & Integer'Image (B));
26
27 Swap_I (A, B);
28
29 Put_Line ("A = "
30 & Integer'Image (A)
31 & ", B = "
32 & Integer'Image (B));
33end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Swap_Ada
MD5: 13f3527b4e3258ebd43be827ad0fcd14

Runtime output

A = 10, B = 42
A = 42, B = 10

There are a few key differences between the C and the Ada version here. In C,
the macro can be used directly and essentially get expanded by the preprocessor
without any kind of checks. In Ada, the generic will first be checked for
internal consistency. It then needs to be explicitly instantiated for a
concrete type. From there, it's exactly as if there was an actual version of
this Swap function, which is going to be called as any other function.
All rules for parameter modes and control will apply to this instance.

In many respects, an Ada generic is a way to provide a safe specification and
implementation of such macros, through both the validation of the generic
itself and its usage.

Subprograms aren't the only entities that can me made generic. As a matter of
fact, it's much more common to render an entire package generic. In this case
the instantiation creates a new version of all the entities present in the
generic, including global variables. For example:

[Ada]

gen.ads

1generic
2 type T is private;
3package Gen is
4 type C is tagged record
5 V : T;
6 end record;
7
8 G : Integer;
9end Gen;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_1
MD5: 721f9954561b7e0d2964ba0d226c748b

The above can be instantiated and used the following way:

main.adb

 1with Gen;
 2
 3procedure Main is
 4 package I1 is new Gen (Integer);
 5 package I2 is new Gen (Integer);
 6 subtype Str10 is String (1 .. 10);
 7 package I3 is new Gen (Str10);
 8begin
 9 I1.G := 0;
10 I2.G := 1;
11 I3.G := 2;
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_1
MD5: ab0e99dedf40fff1bced048a96a0fbb6

Here, I1.G, I2.G and I3.G are three distinct variables.

So far, we've only looked at generics with one kind of parameter: a so-called
private type. There's actually much more that can be described in this section,
such as variables, subprograms or package instantiations with certain
properties. For example, the following provides a sort algorithm for any kind
of structurally compatible array type:

[Ada]

sort.ads

1generic
2 type Component is private;
3 type Index is (<>);
4 with function "<" (Left, Right : Component) return Boolean;
5 type Array_Type is array (Index range <>) of Component;
6procedure Sort (A : in out Array_Type);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_2
MD5: 5781f53f4fd4453ecc1313d05ab76f81

The declaration above states that we need a type (Component), a discrete
type (Index), a comparison subprogram ("<"), and an array
definition (Array_Type). Given these, it's possible to write an
algorithm that can sort any Array_Type. Note the usage of the with
reserved word in front of the function name: it exists to differentiate between
the generic parameter and the beginning of the generic subprogram.

Here is a non-exhaustive overview of the kind of constraints that can be put on
types:

type T is private; -- T is a constrained type, such as Integer
type T (<>) is private; -- T can be an unconstrained type e.g. String
type T is tagged private; -- T is a tagged type
type T is new T2 with private; -- T is an extension of T2
type T is (<>); -- T is a discrete type
type T is range <>; -- T is an integer type
type T is digits <>; -- T is a floating point type
type T is access T2; -- T is an access type to T2

For a more complete list please reference the Generic Formal Types in the
Appendix of the Introduction to Ada course.

Simple derivation

Let's take a case where a codebase needs to handle small variations of a given
device, or maybe different generations of a device, depending on the platform
it's running on. In this example, we're assuming that each platform will lead
to a different binary, so the code can statically resolve which set of services
are available. However, we want an easy way to implement a new device based on
a previous one, saying "this new device is the same as this previous device,
with these new services and these changes in existing services".

We can implement such patterns using Ada's simple derivation — as opposed
to tagged derivation, which is OOP-related and discussed in a later section.

Let's start from the following example:

[Ada]

drivers_1.ads

1package Drivers_1 is
2
3 type Device_1 is null record;
4 procedure Startup (Device : Device_1);
5 procedure Send (Device : Device_1; Data : Integer);
6 procedure Send_Fast (Device : Device_1; Data : Integer);
7 procedure Receive (Device : Device_1; Data : out Integer);
8
9end Drivers_1;

drivers_1.adb

 1package body Drivers_1 is
 2
 3 -- NOTE: unimplemented procedures: Startup, Send, Send_Fast
 4 -- mock-up implementation: Receive
 5
 6 procedure Startup (Device : Device_1) is null;
 7
 8 procedure Send (Device : Device_1; Data : Integer) is null;
 9
10 procedure Send_Fast (Device : Device_1; Data : Integer) is null;
11
12 procedure Receive (Device : Device_1; Data : out Integer) is
13 begin
14 Data := 42;
15 end Receive;
16
17end Drivers_1;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 4f9d7e29b64cda8664438a1d7eed9049

In the above example, Device_1 is an empty record type. It may also have
some fields if required, or be a different type such as a scalar. Then the four
procedures Startup, Send, Send_Fast and Receive are
primitives of this type. A primitive is essentially a subprogram that has a
parameter or return type directly referencing this type and declared in the
same scope. At this stage, there's nothing special with this type: we're using
it as we would use any other type. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_1; use Drivers_1;
 3
 4procedure Main is
 5 D : Device_1;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 1b28f2c8ca92498cbcda582f092b9912

Runtime output

 42

Let's now assume that we need to implement a new generation of device,
Device_2. This new device works exactly like the first one, except for
the startup code that has to be done differently. We can create a new type that
operates exactly like the previous one, but modifies only the behavior of
Startup:

[Ada]

drivers_2.ads

 1with Drivers_1; use Drivers_1;
 2
 3package Drivers_2 is
 4
 5 type Device_2 is new Device_1;
 6
 7 overriding
 8 procedure Startup (Device : Device_2);
 9
10end Drivers_2;

drivers_2.adb

1package body Drivers_2 is
2
3 overriding
4 procedure Startup (Device : Device_2) is null;
5
6end Drivers_2;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 276c9da0b7c9ad61d679531e16fdd9cb

Here, Device_2 is derived from Device_1. It contains all the
exact same properties and primitives, in particular, Startup,
Send, Send_Fast and Receive. However, here, we decided to
change the Startup function and to provide a different implementation.
We override this function. The main subprogram doesn't change much, except for
the fact that it now relies on a different type:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_2; use Drivers_2;
 3
 4procedure Main is
 5 D : Device_2;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 31e7105a99771ce6c1602af117e2e8a6

Runtime output

 42

We can continue with this approach and introduce a new generation of devices.
This new device doesn't implement the Send_Fast service so we want
to remove it from the list of available services. Furthermore, for the purpose
of our example, let's assume that the hardware team went back to the
Device_1 way of implementing Startup. We can write this new
device the following way:

[Ada]

drivers_3.ads

 1with Drivers_1; use Drivers_1;
 2
 3package Drivers_3 is
 4
 5 type Device_3 is new Device_1;
 6
 7 overriding
 8 procedure Startup (Device : Device_3);
 9
10 procedure Send_Fast (Device : Device_3; Data : Integer)
11 is abstract;
12
13end Drivers_3;

drivers_3.adb

1package body Drivers_3 is
2
3 overriding
4 procedure Startup (Device : Device_3) is null;
5
6end Drivers_3;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 779579532c81b672d8a641c0b8594ed5

The is abstract definition makes illegal any call to a function, so
calls to Send_Fast on Device_3 will be flagged as being illegal.
To then implement Startup of Device_3 as being the same as the
Startup of Device_1, we can convert the type in the
implementation:

[Ada]

drivers_3.adb

1package body Drivers_3 is
2
3 overriding
4 procedure Startup (Device : Device_3) is
5 begin
6 Drivers_1.Startup (Device_1 (Device));
7 end Startup;
8
9end Drivers_3;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 5db9596c276a7a4521914f4108f61d28

Our Main now looks like:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_3; use Drivers_3;
 3
 4procedure Main is
 5 D : Device_3;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 8b6af16d21c2f8a1f0e4866e6ddffd1f

Build output

main.adb:9:04: error: cannot call abstract operation "Send_Fast" declared at drivers_3.ads:10
gprbuild: *** compilation phase failed

Here, the call to Send_Fast will get flagged by the compiler.

Note that the fact that the code of Main has to be changed for every
implementation isn't necessarily satisfactory. We may want to go one step
further, and isolate the selection of the device kind to be used for the whole
application in one unique file. One way to do this is to use the same name for
all types, and use a renaming to select which package to use. Here's a
simplified example to illustrate that:

[Ada]

drivers_1.ads

1package Drivers_1 is
2
3 type Transceiver is null record;
4 procedure Send (Device : Transceiver; Data : Integer);
5 procedure Receive (Device : Transceiver; Data : out Integer);
6
7end Drivers_1;

drivers_1.adb

 1package body Drivers_1 is
 2
 3 procedure Send (Device : Transceiver; Data : Integer) is null;
 4
 5 procedure Receive (Device : Transceiver; Data : out Integer) is
 6 pragma Unreferenced (Device);
 7 begin
 8 Data := 42;
 9 end Receive;
10
11end Drivers_1;

drivers_2.ads

1with Drivers_1;
2
3package Drivers_2 is
4
5 type Transceiver is new Drivers_1.Transceiver;
6 procedure Send (Device : Transceiver; Data : Integer);
7 procedure Receive (Device : Transceiver; Data : out Integer);
8
9end Drivers_2;

drivers_2.adb

 1package body Drivers_2 is
 2
 3 procedure Send (Device : Transceiver; Data : Integer) is null;
 4
 5 procedure Receive (Device : Transceiver; Data : out Integer) is
 6 pragma Unreferenced (Device);
 7 begin
 8 Data := 42;
 9 end Receive;
10
11end Drivers_2;

drivers.ads

1with Drivers_1;
2
3package Drivers renames Drivers_1;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers; use Drivers;
 3
 4procedure Main is
 5 D : Transceiver;
 6 I : Integer;
 7begin
 8 Send (D, 999);
 9 Receive (D, I);
10 Put_Line (Integer'Image (I));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: e92590e4b91fef33f4fec23362a52873

Runtime output

 42

In the above example, the whole code can rely on drivers.ads, instead
of relying on the specific driver. Here, Drivers is another name for
Driver_1. In order to switch to Driver_2, the project only has to
replace that one drivers.ads file.

In the following section, we'll go one step further and demonstrate that this
selection can be done through a configuration switch selected at build time
instead of a manual code modification.

Configuration pragma files

Configuration pragmas are a set of pragmas that modify the compilation of
source-code files. You may use them to either relax or strengthen requirements.
For example:

pragma Suppress (Overflow_Check);

In this example, we're suppressing the overflow check, thereby relaxing a
requirement. Normally, the following program would raise a constraint error due
to a failed overflow check:

[Ada]

p.ads

1package P is
2 function Add_Max (A : Integer) return Integer;
3end P;

p.adb

1package body P is
2 function Add_Max (A : Integer) return Integer is
3 begin
4 return A + Integer'Last;
5 end Add_Max;
6end P;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with P; use P;
3
4procedure Main is
5 I : Integer := Integer'Last;
6begin
7 I := Add_Max (I);
8 Put_Line ("I = " & Integer'Image (I));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Constraint_Error_Detection
MD5: d6960fe8ae2af1d66b617bb92d3d47b6

Runtime output

raised CONSTRAINT_ERROR : p.adb:4 overflow check failed

When suppressing the overflow check, however, the program doesn't raise an
exception, and the value that Add_Max returns is -2, which is a
wraparound of the sum of the maximum integer values
(Integer'Last + Integer'Last).

We could also strengthen requirements, as in this example:

pragma Restrictions (No_Floating_Point);

Here, the restriction forbids the use of floating-point types and objects. The
following program would violate this restriction, so the compiler isn't able to
compile the program when the restriction is used:

procedure Main is
 F : Float := 0.0;
 -- Declaration is not possible with No_Floating_Point restriction.
begin
 null;
end Main;

Restrictions are especially useful for high-integrity applications. In fact,
the Ada Reference Manual has a separate section for them[#1].

When creating a project, it is practical to list all configuration pragmas in a
separate file. This is called a configuration pragma file, and it usually has
an .adc file extension. If you use GPRbuild for building Ada
applications, you can specify the configuration pragma file in the
corresponding project file. For example, here we indicate that gnat.adc
is the configuration pragma file for our project:

project Default is

 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Main use ("main.adb");

 package Compiler is
 for Local_Configuration_Pragmas use "gnat.adc";
 end Compiler;

end Default;

Configuration packages

In C, preprocessing flags are used to create blocks of code that are only
compiled under certain circumstances. For example, we could have a block that
is only used for debugging:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4int func(int x)
 5{
 6 return x % 4;
 7}
 8
 9int main()
10{
11 int a, b;
12
13 a = 10;
14 b = func(a);
15
16#ifdef DEBUG
17 printf("func(%d) => %d\n", a, b);
18#endif
19
20 return 0;
21}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Debug_Code_C
MD5: 4daa8123f7112e7487ab54f16f80d34b

Here, the block indicated by the DEBUG flag is only included in the build
if we define this preprocessing flag, which is what we expect for a debug
version of the build. In the release version, however, we want to keep debug
information out of the build, so we don't use this flag during the build
process.

Ada doesn't define a preprocessor as part of the language. Some Ada toolchains
— like the GNAT toolchain — do have a preprocessor that could
create code similar to the one we've just seen. When programming in Ada,
however, the recommendation is to use configuration packages to select code
blocks that are meant to be included in the application.

When using a configuration package, the example above can be written as:

[Ada]

config.ads

1package Config is
2
3 Debug : constant Boolean := False;
4
5end Config;

func.ads

1function Func (X : Integer) return Integer;

func.adb

1function Func (X : Integer) return Integer is
2begin
3 return X mod 4;
4end Func;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Config;
 3with Func;
 4
 5procedure Main is
 6 A, B : Integer;
 7begin
 8 A := 10;
 9 B := Func (A);
10
11 if Config.Debug then
12 Put_Line ("Func(" & Integer'Image (A) & ") => "
13 & Integer'Image (B));
14 end if;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Debug_Code_Ada
MD5: b643b683098fa7ad5568a69c9f2c000f

In this example, Config is a configuration package. The version of
Config we're seeing here is the release version. The debug version of
the Config package looks like this:

package Config is

 Debug : constant Boolean := True;

end Config;

The compiler makes sure to remove dead code. In the case of the release
version, since Config.Debug is constant and set to False, the
compiler is smart enough to remove the call to Put_Line from the build.

As you can see, both versions of Config are very similar to each other.
The general idea is to create packages that declare the same constants, but
using different values.

In C, we differentiate between the debug and release versions by selecting
the appropriate preprocessing flags, but in Ada, we select the appropriate
configuration package during the build process. Since the file name is usually
the same (config.ads for the example above), we may want to store them
in distinct directories. For the example above, we could have:

	src/debug/config.ads for the debug version, and

	src/release/config.ads for the release version.

Then, we simply select the appropriate configuration package for each version
of the build by indicating the correct path to it. When using
GPRbuild, we can select the appropriate directory where the
config.ads file is located. We can use scenario variables in our
project, which allow for creating different versions of a build. For example:

project Default is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external ("mode", "debug");

 for Source_Dirs use ("src", "src/" & Mode);
 for Object_Dir use "obj";
 for Main use ("main.adb");

end Default;

In this example, we're defining a scenario type called Mode_Type. Then,
we're declaring the scenario variable Mode and using it in the
Source_Dirs declaration to complete the path to the subdirectory
containing the config.ads file. The expression "src/" & Mode
concatenates the user-specified mode to select the appropriate subdirectory.

We can then set the mode on the command-line. For example:

gprbuild -P default.gpr -Xmode=release

In addition to selecting code blocks for the build, we could also specify
values that depend on the target build. For our example above, we may want to
create two versions of the application, each one having a different version of
a MOD_VALUE that is used in the implementation of func(). In C, we
can achieve this by using preprocessing flags and defining the corresponding
version in APP_VERSION. Then, depending on the value of APP_VERSION,
we define the corresponding value of MOD_VALUE.

[C]

defs.h

 1#ifndef APP_VERSION
 2#define APP_VERSION 1
 3#endif
 4
 5#if APP_VERSION == 1
 6#define MOD_VALUE 4
 7#endif
 8
 9#if APP_VERSION == 2
10#define MOD_VALUE 5
11#endif

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#include "defs.h"
 5
 6int func(int x)
 7{
 8 return x % MOD_VALUE;
 9}
10
11int main()
12{
13 int a, b;
14
15 a = 10;
16 b = func(a);
17
18 return 0;
19}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.App_Version_C
MD5: 9f204dcc65b70618324c48be0dbdffbe

If not defined outside, the code above will compile version #1 of the
application. We can change this by specifying a value for APP_VERSION
during the build (e.g. as a Makefile switch).

For the Ada version of this code, we can create two configuration packages for
each version of the application. For example:

[Ada]

app_defs.ads

1-- ./src/app_1/app_defs.ads
2
3package App_Defs is
4
5 Mod_Value : constant Integer := 4;
6
7end App_Defs;

func.ads

1function Func (X : Integer) return Integer;

func.adb

1with App_Defs;
2
3function Func (X : Integer) return Integer is
4begin
5 return X mod App_Defs.Mod_Value;
6end Func;

main.adb

1with Func;
2
3procedure Main is
4 A, B : Integer;
5begin
6 A := 10;
7 B := Func (A);
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.App_Version_Ada
MD5: 7c8e4280e74c04ab51073b25e8f53995

The code above shows the version #1 of the configuration package. The
corresponding implementation for version #2 looks like this:

-- ./src/app_2/app_defs.ads

package App_Defs is

 Mod_Value : constant Integer := 5;

end App_Defs;

Again, we just need to select the appropriate configuration package for each
version of the build, which we can easily do when using GPRbuild.

Handling variability & reusability dynamically

Records with discriminants

In basic terms, records with discriminants are records that include
"parameters" in their type definitions. This allows for adding more flexibility
to the type definition. In the section about pointers, we've
seen this example:

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Positive) is record
 5 A : Arr (0 .. Last);
 6 end record;
 7
 8 V : S (9);
 9begin
10 null;
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_Ada
MD5: 02fa8fa7832a262b99aee139a1b5b7a6

Here, Last is the discriminant for type S. When declaring the
variable V as S (9), we specify the actual index of the last
position of the array component A by setting the Last
discriminant to 9.

We can create an equivalent implementation in C by declaring a struct
with a pointer to an array:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4typedef struct {
 5 int * a;
 6 const int last;
 7} S;
 8
 9S init_s (int last)
10{
11 S v = { malloc (sizeof(int) * last + 1), last };
12 return v;
13}
14
15int main(int argc, const char * argv[])
16{
17 S v = init_s (9);
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_C
MD5: 8f8b53c38c2ef8c1624208a2d8fd13ef

Here, we need to explicitly allocate the a array of the S struct
via a call to malloc(), which allocates memory space on the heap. In the
Ada version, in contrast, the array (V.A) is allocated on the stack and
we don't need to explicitly allocate it.

Note that the information that we provide as the discriminant to the record
type (in the Ada code) is constant, so we cannot assign a value to it. For
example, we cannot write:

[Ada]

V.Last := 10; -- COMPILATION ERROR!

In the C version, we declare the last field constant to get the same
behavior.

[C]

v.last = 10; // COMPILATION ERROR!

Note that the information provided as discriminants is visible. In the example
above, we could display Last by writing:

[Ada]

Put_Line ("Last : " & Integer'Image (V.Last));

Also note that, even if a type is private, we can still access the information
of the discriminants if they are visible in the public part of the type
declaration. Let's rewrite the example above:

[Ada]

array_definition.ads

 1package Array_Definition is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Integer) is private;
 5
 6private
 7 type S (Last : Integer) is record
 8 A : Arr (0 .. Last);
 9 end record;
10
11end Array_Definition;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Array_Definition; use Array_Definition;
3
4procedure Main is
5 V : S (9);
6begin
7 Put_Line ("Last : " & Integer'Image (V.Last));
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_Ada_Private
MD5: fa0158c3c61dd9ec7e4000416672f9e9

Build output

main.adb:5:04: warning: variable "V" is read but never assigned [-gnatwv]

Runtime output

Last : 9

Even though the S type is now private, we can still display Last
because this discriminant is visible in the non-private part of package
Array_Definition.

Variant records

In simple terms, a variant record is a record with discriminants that allows
for changing its structure. Basically, it's a record containing a case.
This is the general structure:

[Ada]

type Var_Rec (V : F) is record

 case V is
 when Opt_1 => F1 : Type_1;
 when Opt_2 => F2 : Type_2;
 end case;

end record;

Let's look at this example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Float_Int (Use_Float : Boolean) is record
 6 case Use_Float is
 7 when True => F : Float;
 8 when False => I : Integer;
 9 end case;
10 end record;
11
12 procedure Display (V : Float_Int) is
13 begin
14 if V.Use_Float then
15 Put_Line ("Float value: " & Float'Image (V.F));
16 else
17 Put_Line ("Integer value: " & Integer'Image (V.I));
18 end if;
19 end Display;
20
21 F : constant Float_Int := (Use_Float => True, F => 10.0);
22 I : constant Float_Int := (Use_Float => False, I => 9);
23
24begin
25 Display (F);
26 Display (I);
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_Ada
MD5: 72dd64c22d65fc527af0c3de73ff7966

Runtime output

Float value: 1.00000E+01
Integer value: 9

Here, we declare F containing a floating-point value, and I
containing an integer value. In the Display procedure, we present the
correct information to the user according to the Use_Float discriminant
of the Float_Int type.

We can implement this example in C by using unions:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4typedef struct {
 5 int use_float;
 6 union {
 7 float f;
 8 int i;
 9 };
10} float_int;
11
12float_int init_float (float f)
13{
14 float_int v;
15
16 v.use_float = 1;
17 v.f = f;
18 return v;
19}
20
21float_int init_int (int i)
22{
23 float_int v;
24
25 v.use_float = 0;
26 v.i = i;
27 return v;
28}
29
30void display (float_int v)
31{
32 if (v.use_float) {
33 printf("Float value : %f\n", v.f);
34 }
35 else {
36 printf("Integer value : %d\n", v.i);
37 }
38}
39
40int main(int argc, const char * argv[])
41{
42 float_int f = init_float (10.0);
43 float_int i = init_int (9);
44
45 display (f);
46 display (i);
47
48 return 0;
49}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_C
MD5: ac0ad1e6ff7f2154e9dbb6838999a62e

Runtime output

Float value : 10.000000
Integer value : 9

Similar to the Ada code, we declare f containing a floating-point value,
and i containing an integer value. One difference is that we use the
init_float() and init_int() functions to initialize the
float_int struct. These functions initialize the correct field of the
union and set the use_float field accordingly.

Variant records and unions

There is, however, a difference in accessibility between variant records in Ada
and unions in C. In C, we're allowed to access any field of the union
regardless of the initialization:

[C]

float_int v = init_float (10.0);

printf("Integer value : %d\n", v.i);

This feature is useful to create overlays. In this specific example, however,
the information displayed to the user doesn't make sense, since the union was
initialized with a floating-point value (v.f) and, by accessing the
integer field (v.i), we're displaying it as if it was an integer value.

In Ada, accessing the wrong component would raise an exception at run-time
("discriminant check failed"), since the component is checked before being
accessed:

[Ada]

 V : constant Float_Int := (Use_Float => True, F => 10.0);
begin
 Put_Line ("Integer value: " & Integer'Image (V.I));
 -- ^ Constraint_Error is raised!

Using this method prevents wrong information being used in other parts
of the program.

To get the same behavior in Ada as we do in C, we need to explicitly use the
Unchecked_Union aspect in the type declaration. This is the modified
example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Float_Int_Union (Use_Float : Boolean) is record
 6 case Use_Float is
 7 when True => F : Float;
 8 when False => I : Integer;
 9 end case;
10 end record
11 with Unchecked_Union;
12
13 V : constant Float_Int_Union := (Use_Float => True, F => 10.0);
14
15begin
16 Put_Line ("Integer value: " & Integer'Image (V.I));
17end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Unchecked_Union_Ada
MD5: f6c5eacbd96c23531d02bb47a9668ac5

Runtime output

Integer value: 1092616192

Now, we can display the integer component (V.I) even though we
initialized the floating-point component (V.F). As expected, the
information displayed by the test application in this case doesn't make sense.

Note that, when using the Unchecked_Union aspect in the declaration of a
variant record, the reference discriminant is not available anymore, since it
isn't stored as part of the record. Therefore, we cannot access the
Use_Float discriminant as in the following code:

[Ada]

 V : constant Float_Int_Union := (Use_Float => True, F => 10.0);
begin
 if V.Use_Float then -- COMPILATION ERROR!
 -- Do something...
 end if;

Unchecked unions are particularly useful in Ada when creating bindings for C
code.

Optional components

We can also use variant records to specify optional components of a record.
For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr is array (Integer range <>) of Integer;
 5
 6 type Extra_Info is (No, Yes);
 7
 8 type S_Var (Last : Integer; Has_Extra_Info : Extra_Info) is record
 9 A : Arr (0 .. Last);
10
11 case Has_Extra_Info is
12 when No => null;
13 when Yes => B : Arr (0 .. Last);
14 end case;
15 end record;
16
17 V1 : S_Var (Last => 9, Has_Extra_Info => Yes);
18 V2 : S_Var (Last => 9, Has_Extra_Info => No);
19begin
20 Put_Line ("Size of V1 is: " & Integer'Image (V1'Size));
21 Put_Line ("Size of V2 is: " & Integer'Image (V2'Size));
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_Null_Ada
MD5: 548235fa8458302ba025c8fa49e61777

Build output

main.adb:17:04: warning: variable "V1" is read but never assigned [-gnatwv]
main.adb:18:04: warning: variable "V2" is read but never assigned [-gnatwv]

Runtime output

Size of V1 is: 704
Size of V2 is: 384

Here, in the declaration of S_Var, we don't have any component in case
Has_Extra_Info is false. The component is simply set to null in
this case.

When running the example above, we see that the size of V1 is greater
than the size of V2 due to the extra B component — which is
only included when Has_Extra_Info is true.

Optional output information

We can use optional components to prevent subprograms from generating invalid
information that could be misused by the caller. Consider the following
example:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4float calculate (float f1,
 5 float f2,
 6 int *success)
 7{
 8 if (f1 < f2) {
 9 *success = 1;
10 return f2 - f1;
11 }
12 else {
13 *success = 0;
14 return 0.0;
15 }
16}
17
18void display (float v,
19 int success)
20{
21 if (success) {
22 printf("Value = %f\n", v);
23 }
24 else {
25 printf("Calculation error!\n");
26 }
27}
28
29int main(int argc, const char * argv[])
30{
31 float f;
32 int success;
33
34 f = calculate (1.0, 0.5, &success);
35 display (f, success);
36
37 f = calculate (0.5, 1.0, &success);
38 display (f, success);
39
40 return 0;
41}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Non_Opt_C
MD5: 56f8a72782c4a54d8a6026aa39ce421a

Runtime output

Calculation error!
Value = 0.500000

In this code, we're using the output parameter success of the
calculate() function to indicate whether the calculation was successful
or not. This approach has a major problem: there's no way to prevent that the
invalid value returned by calculate() in case of an error is misused in
another computation. For example:

[C]

int main(int argc, const char * argv[])
{
 float f;
 int success;

 f = calculate (1.0, 0.5, &success);

 f = f * 0.25; // Using f in another computation even though
 // calculate() returned a dummy value due to error!
 // We should have evaluated "success", but we didn't.

 return 0;
}

We cannot prevent access to the returned value or, at least, force the caller
to evaluate success before using the returned value.

This is the corresponding code in Ada:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 function Calculate (F1, F2 : Float;
 6 Success : out Boolean) return Float is
 7 begin
 8 if F1 < F2 then
 9 Success := True;
10 return F2 - F1;
11 else
12 Success := False;
13 return 0.0;
14 end if;
15 end Calculate;
16
17 procedure Display (V : Float; Success : Boolean) is
18 begin
19 if Success then
20 Put_Line ("Value = " & Float'Image (V));
21 else
22 Put_Line ("Calculation error!");
23 end if;
24 end Display;
25
26 F : Float;
27 Success : Boolean;
28begin
29 F := Calculate (1.0, 0.5, Success);
30 Display (F, Success);
31
32 F := Calculate (0.5, 1.0, Success);
33 Display (F, Success);
34end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Non_Opt_Ada
MD5: bb27fd31660ad604487f908934a3d3cb

Runtime output

Calculation error!
Value = 5.00000E-01

The Ada code above suffers from the same drawbacks as the C code. Again,
there's no way to prevent misuse of the invalid value returned by
Calculate in case of errors.

However, in Ada, we can use variant records to make the component unavailable
and therefore prevent misuse of this information. Let's rewrite the original
example and wrap the returned value in a variant record:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Opt_Float (Success : Boolean) is record
 6 case Success is
 7 when False => null;
 8 when True => F : Float;
 9 end case;
10 end record;
11
12 function Calculate (F1, F2 : Float) return Opt_Float is
13 begin
14 if F1 < F2 then
15 return (Success => True, F => F2 - F1);
16 else
17 return (Success => False);
18 end if;
19 end Calculate;
20
21 procedure Display (V : Opt_Float) is
22 begin
23 if V.Success then
24 Put_Line ("Value = " & Float'Image (V.F));
25 else
26 Put_Line ("Calculation error!");
27 end if;
28 end Display;
29
30begin
31 Display (Calculate (1.0, 0.5));
32 Display (Calculate (0.5, 1.0));
33end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Opt_Ada
MD5: 8b70cd16d5ff13611567fa71059d6891

Runtime output

Calculation error!
Value = 5.00000E-01

In this example, we can determine whether the calculation was successful or not
by evaluating the Success component of the Opt_Float. If the
calculation wasn't successful, we won't be able to access the F
component of the Opt_Float. As mentioned before, trying to access the
component in this case would raise an exception. Therefore, in case of errors,
we can ensure that no information is misused after the call to
Calculate.

Object orientation

In the previous section, we've seen that we
can add variability to records by using discriminants. Another approach is to
use tagged records, which are the base for object-oriented programming in
Ada.

Type extension

A tagged record type is declared by adding the tagged keyword. For
example:

[Ada]

main.adb

 1procedure Main is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 type Tagged_Rec is tagged record
 8 V : Integer;
 9 end record;
10
11 R1 : Rec;
12 R2 : Tagged_Rec;
13
14 pragma Unreferenced (R1, R2);
15begin
16 R1 := (V => 0);
17 R2 := (V => 0);
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Decl
MD5: 53810d3bb5aa7e7b1483270d974eb025

In this simple example, there isn't much difference between the Rec and
Tagged_Rec type. However, tagged types can be derived and extended. For
example:

[Ada]

main.adb

 1procedure Main is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 -- We cannot declare this:
 8 --
 9 -- type Ext_Rec is new Rec with record
10 -- V : Integer;
11 -- end record;
12
13 type Tagged_Rec is tagged record
14 V : Integer;
15 end record;
16
17 -- But we can declare this:
18 --
19 type Ext_Tagged_Rec is new Tagged_Rec with record
20 V2 : Integer;
21 end record;
22
23 R1 : Rec;
24 R2 : Tagged_Rec;
25 R3 : Ext_Tagged_Rec;
26
27 pragma Unreferenced (R1, R2, R3);
28begin
29 R1 := (V => 0);
30 R2 := (V => 0);
31 R3 := (V => 0, V2 => 0);
32end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Extension_Decl
MD5: 707a3e6b220357f50f6792190b000c91

As indicated in the example, a type derived from an untagged type cannot have
an extension. The compiler indicates this error if you uncomment the
declaration of the Ext_Rec type above. In contrast, we can extend a
tagged type, as we did in the declaration of Ext_Tagged_Rec. In this
case, Ext_Tagged_Rec has all the components of the Tagged_Rec
type (V, in this case) plus the additional components from its own type
declaration (V2, in this case).

Overriding subprograms

Previously, we've seen that subprograms can be overriden. For example, if we
had implemented a Reset and a Display procedure for the
Rec type that we declared above, these procedures would be available for
an Ext_Rec type derived from Rec. Also, we could override these
procedures for the Ext_Rec type. In Ada, we don't need object-oriented
programming features to do that: simple (untagged) records can be used to
derive types, inherit operations and override them. However, in applications
where the actual subprogram to be called is determined dynamically at run-time,
we need dispatching calls. In this case, we must use tagged types to implement
this.

Comparing untagged and tagged types

Let's discuss the similarities and differences between untagged and tagged
types based on this example:

[Ada]

p.ads

 1package P is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 procedure Display (R : Rec);
 8 procedure Reset (R : out Rec);
 9
10 type New_Rec is new Rec;
11
12 overriding procedure Display (R : New_Rec);
13 not overriding procedure New_Op (R : in out New_Rec);
14
15 type Tagged_Rec is tagged record
16 V : Integer;
17 end record;
18
19 procedure Display (R : Tagged_Rec);
20 procedure Reset (R : out Tagged_Rec);
21
22 type Ext_Tagged_Rec is new Tagged_Rec with record
23 V2 : Integer;
24 end record;
25
26 overriding procedure Display (R : Ext_Tagged_Rec);
27 overriding procedure Reset (R : out Ext_Tagged_Rec);
28 not overriding procedure New_Op (R : in out Ext_Tagged_Rec);
29
30end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display (R : Rec) is
 6 begin
 7 Put_Line ("TYPE: REC");
 8 Put_Line ("Rec.V = " & Integer'Image (R.V));
 9 New_Line;
10 end Display;
11
12 procedure Reset (R : out Rec) is
13 begin
14 R.V := 0;
15 end Reset;
16
17 procedure Display (R : New_Rec) is
18 begin
19 Put_Line ("TYPE: NEW_REC");
20 Put_Line ("New_Rec.V = " & Integer'Image (R.V));
21 New_Line;
22 end Display;
23
24 procedure New_Op (R : in out New_Rec) is
25 begin
26 R.V := R.V + 1;
27 end New_Op;
28
29 procedure Display (R : Tagged_Rec) is
30 begin
31 -- Using External_Tag attribute to retrieve the tag as a string
32 Put_Line ("TYPE: " & Tagged_Rec'External_Tag);
33 Put_Line ("Tagged_Rec.V = " & Integer'Image (R.V));
34 New_Line;
35 end Display;
36
37 procedure Reset (R : out Tagged_Rec) is
38 begin
39 R.V := 0;
40 end Reset;
41
42 procedure Display (R : Ext_Tagged_Rec) is
43 begin
44 -- Using External_Tag attribute to retrieve the tag as a string
45 Put_Line ("TYPE: " & Ext_Tagged_Rec'External_Tag);
46 Put_Line ("Ext_Tagged_Rec.V = " & Integer'Image (R.V));
47 Put_Line ("Ext_Tagged_Rec.V2 = " & Integer'Image (R.V2));
48 New_Line;
49 end Display;
50
51 procedure Reset (R : out Ext_Tagged_Rec) is
52 begin
53 Tagged_Rec (R).Reset;
54 R.V2 := 0;
55 end Reset;
56
57 procedure New_Op (R : in out Ext_Tagged_Rec) is
58 begin
59 R.V := R.V + 1;
60 end New_Op;
61
62end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P; use P;
 3
 4procedure Main is
 5 X_Rec : Rec;
 6 X_New_Rec : New_Rec;
 7
 8 X_Tagged_Rec : aliased Tagged_Rec;
 9 X_Ext_Tagged_Rec : aliased Ext_Tagged_Rec;
10
11 X_Tagged_Rec_Array : constant array (1 .. 2) of access Tagged_Rec'Class
12 := (X_Tagged_Rec'Access, X_Ext_Tagged_Rec'Access);
13begin
14 --
15 -- Reset all objects
16 --
17 Reset (X_Rec);
18 Reset (X_New_Rec);
19 X_Tagged_Rec.Reset; -- we could write "Reset (X_Tagged_Rec)" as well
20 X_Ext_Tagged_Rec.Reset;
21
22 --
23 -- Use new operations when available
24 --
25 New_Op (X_New_Rec);
26 X_Ext_Tagged_Rec.New_Op;
27
28 --
29 -- Display all objects
30 --
31 Display (X_Rec);
32 Display (X_New_Rec);
33 X_Tagged_Rec.Display; -- we could write "Display (X_Tagged_Rec)" as well
34 X_Ext_Tagged_Rec.Display;
35
36 --
37 -- Resetting and display objects of Tagged_Rec'Class
38 --
39 Put_Line ("Operations on Tagged_Rec'Class");
40 Put_Line ("------------------------------");
41 for E of X_Tagged_Rec_Array loop
42 E.Reset;
43 E.Display;
44 end loop;
45end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Extension_Decl
MD5: 29412b74db6680f0a0986b62e5284cf7

Runtime output

TYPE: REC
Rec.V = 0

TYPE: NEW_REC
New_Rec.V = 1

TYPE: P.TAGGED_REC
Tagged_Rec.V = 0

TYPE: P.EXT_TAGGED_REC
Ext_Tagged_Rec.V = 1
Ext_Tagged_Rec.V2 = 0

Operations on Tagged_Rec'Class

TYPE: P.TAGGED_REC
Tagged_Rec.V = 0

TYPE: P.EXT_TAGGED_REC
Ext_Tagged_Rec.V = 0
Ext_Tagged_Rec.V2 = 0

These are the similarities between untagged and tagged types:

	We can derive types and inherit operations in both cases.

	Both X_New_Rec and X_Ext_Tagged_Rec inherit the
Display and Reset procedures from their respective
ancestors.

	We can override operations in both cases.

	We can implement new operations in both cases.

	Both X_New_Rec and X_Ext_Tagged_Rec implement a procedure
called New_Op, which is not available for their respective
ancestors.

Now, let's look at the differences between untagged and tagged types:

	We can dispatch calls for a given type class.

	This is what we do when we iterate over objects of the
Tagged_Rec class — in the loop over
X_Tagged_Rec_Array at the last part of the Main procedure.

	We can use the dot notation.

	We can write both E.Reset or Reset (E) forms: they're
equivalent.

Dispatching calls

Let's look more closely at the dispatching calls implemented above. First, we
declare the X_Tagged_Rec_Array array and initialize it with the access
to objects of both parent and derived tagged types:

[Ada]

X_Tagged_Rec : aliased Tagged_Rec;
X_Ext_Tagged_Rec : aliased Ext_Tagged_Rec;

X_Tagged_Rec_Array : constant array (1 .. 2) of access Tagged_Rec'Class
 := (X_Tagged_Rec'Access, X_Ext_Tagged_Rec'Access);

Here, we use the aliased keyword to be able to get access to the objects
(via the 'Access attribute).

Then, we loop over this array and call the Reset and Display
procedures:

[Ada]

for E of X_Tagged_Rec_Array loop
 E.Reset;
 E.Display;
end loop;

Since we're using dispatching calls, the actual procedure that is selected
depends on the type of the object. For the first element
(X_Tagged_Rec_Array (1)), this is Tagged_Rec, while for the
second element (X_Tagged_Rec_Array (2)), this is Ext_Tagged_Rec.

Dispatching calls are only possible for a type class — for example, the
Tagged_Rec'Class. When the type of an object is known at compile time,
the calls won't dispatch at runtime. For example, the call to the Reset
procedure of the X_Ext_Tagged_Rec object
(X_Ext_Tagged_Rec.Reset) will always take the overriden
Reset procedure of the Ext_Tagged_Rec type. Similarly, if we
perform a view conversion by writing
Tagged_Rec (A_Ext_Tagged_Rec).Display, we're instructing the compiler to
interpret A_Ext_Tagged_Rec as an object of type Tagged_Rec, so
that the compiler selects the Display procedure of the Tagged_Rec
type.

Interfaces

Another useful feature of object-oriented programming is the use of interfaces.
In this case, we can define abstract operations, and implement them in the
derived tagged types. We declare an interface by simply writing
type T is interface. For example:

[Ada]

type My_Interface is interface;

procedure Op (Obj : My_Interface) is abstract;

-- We cannot declare actual objects of an interface:
--
-- Obj : My_Interface; -- ERROR!

All operations on an interface type are abstract, so we need to write
is abstract in the signature — as we did in the declaration of
Op above. Also, since interfaces are abstract types and don't have an
actual implementation, we cannot declare objects for it.

We can derive tagged types from an interface and implement the actual
operations of that interface:

[Ada]

type My_Derived is new My_Interface with null record;

procedure Op (Obj : My_Derived);

Note that we're not using the tagged keyword in the declaration because
any type derived from an interface is automatically tagged.

Let's look at an example with an interface and two derived tagged types:

[Ada]

p.ads

 1package P is
 2
 3 type Display_Interface is interface;
 4 procedure Display (D : Display_Interface) is abstract;
 5
 6 type Small_Display_Type is new Display_Interface with null record;
 7 procedure Display (D : Small_Display_Type);
 8
 9 type Big_Display_Type is new Display_Interface with null record;
10 procedure Display (D : Big_Display_Type);
11
12end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display (D : Small_Display_Type) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Using Small_Display_Type");
 9 end Display;
10
11 procedure Display (D : Big_Display_Type) is
12 pragma Unreferenced (D);
13 begin
14 Put_Line ("Using Big_Display_Type");
15 end Display;
16
17end P;

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 D_Small : Small_Display_Type;
 5 D_Big : Big_Display_Type;
 6
 7 procedure Dispatching_Display (D : Display_Interface'Class) is
 8 begin
 9 D.Display;
10 end Dispatching_Display;
11
12begin
13 Dispatching_Display (D_Small);
14 Dispatching_Display (D_Big);
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Interfaces_1
MD5: 564eba158b2f8fc3efea9e892a21caa9

Runtime output

Using Small_Display_Type
Using Big_Display_Type

In this example, we have an interface type Display_Interface and two
tagged types that are derived from Display_Interface:
Small_Display_Type and Big_Display_Type.

Both types (Small_Display_Type and Big_Display_Type) implement
the interface by overriding the Display procedure. Then, in the inner
procedure Dispatching_Display of the Main procedure, we perform
a dispatching call depending on the actual type of D.

Deriving from multiple interfaces

We may derive a type from multiple interfaces by simply writing
type Derived_T is new T1 and T2 with null record. For example:

[Ada]

transceivers.ads

 1package Transceivers is
 2
 3 type Send_Interface is interface;
 4
 5 procedure Send (Obj : in out Send_Interface) is abstract;
 6
 7 type Receive_Interface is interface;
 8
 9 procedure Receive (Obj : in out Receive_Interface) is abstract;
10
11 type Transceiver is new Send_Interface and Receive_Interface
12 with null record;
13
14 procedure Send (D : in out Transceiver);
15 procedure Receive (D : in out Transceiver);
16
17end Transceivers;

transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Transceivers is
 4
 5 procedure Send (D : in out Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Sending data...");
 9 end Send;
10
11 procedure Receive (D : in out Transceiver) is
12 pragma Unreferenced (D);
13 begin
14 Put_Line ("Receiving data...");
15 end Receive;
16
17end Transceivers;

main.adb

1with Transceivers; use Transceivers;
2
3procedure Main is
4 D : Transceiver;
5begin
6 D.Send;
7 D.Receive;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: c81813941bd3458eaf7b1fd39b010a03

Runtime output

Sending data...
Receiving data...

In this example, we're declaring two interfaces (Send_Interface and
Receive_Interface) and the tagged type Transceiver that derives
from both interfaces. Since we need to implement the interfaces, we implement
both Send and Receive for Transceiver.

Abstract tagged types

We may also declare abstract tagged types. Note that, because the type is
abstract, we cannot use it to declare objects for it — this is the same
as for interfaces. We can only use it to derive other types. Let's look at the
abstract tagged type declared in the Abstract_Transceivers package:

[Ada]

abstract_transceivers.ads

 1with Transceivers; use Transceivers;
 2
 3 package Abstract_Transceivers is
 4
 5 type Abstract_Transceiver is abstract new Send_Interface and
 6 Receive_Interface with null record;
 7
 8 procedure Send (D : in out Abstract_Transceiver);
 9 -- We don't implement Receive for Abstract_Transceiver!
10
11 end Abstract_Transceivers;

abstract_transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 package body Abstract_Transceivers is
 4
 5 procedure Send (D : in out Abstract_Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Sending data...");
 9 end Send;
10
11 end Abstract_Transceivers;

main.adb

1with Abstract_Transceivers; use Abstract_Transceivers;
2
3 procedure Main is
4 D : Abstract_Transceiver;
5 begin
6 D.Send;
7 D.Receive;
8 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: c2b0b3aab1ffc9c3b9a0749bf6721088

Build output

main.adb:4:09: error: type of object cannot be abstract
main.adb:7:06: error: call to abstract procedure must be dispatching
gprbuild: *** compilation phase failed

In this example, we declare the abstract tagged type
Abstract_Transceiver. Here, we're only partially implementing the
interfaces from which this type is derived: we're implementing Send, but
we're skipping the implementation of Receive. Therefore, Receive
is an abstract operation of Abstract_Transceiver. Since any tagged type
that has abstract operations is abstract, we must indicate this by adding the
abstract keyword in type declaration.

Also, when compiling this example, we get an error because we're trying to
declare an object of Abstract_Transceiver (in the Main
procedure), which is not possible. Naturally, if we derive another type from
Abstract_Transceiver and implement Receive as well, then we can
declare objects of this derived type. This is what we do in the
Full_Transceivers below:

[Ada]

full_transceivers.ads

1with Abstract_Transceivers; use Abstract_Transceivers;
2
3package Full_Transceivers is
4
5 type Full_Transceiver is new Abstract_Transceiver with null record;
6 procedure Receive (D : in out Full_Transceiver);
7
8end Full_Transceivers;

full_transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Full_Transceivers is
 4
 5 procedure Receive (D : in out Full_Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Receiving data...");
 9 end Receive;
10
11end Full_Transceivers;

main.adb

1with Full_Transceivers; use Full_Transceivers;
2
3procedure Main is
4 D : Full_Transceiver;
5begin
6 D.Send;
7 D.Receive;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: 77a86a6d917547d306a89422e7522111

Runtime output

Sending data...
Receiving data...

Here, we implement the Receive procedure for the
Full_Transceiver. Therefore, the type doesn't have any abstract
operation, so we can use it to declare objects.

From simple derivation to OOP

In the section about simple derivation, we've seen an
example where the actual selection was done at implementation time by
renaming one of the packages:

[Ada]

with Drivers_1;

package Drivers renames Drivers_1;

Although this approach is useful in many cases, there might be situations where
we need to select the actual driver dynamically at runtime. Let's look at how
we could rewrite that example using interfaces, tagged types and dispatching
calls:

[Ada]

drivers_base.ads

1package Drivers_Base is
2
3 type Transceiver is interface;
4
5 procedure Send (Device : Transceiver; Data : Integer) is abstract;
6 procedure Receive (Device : Transceiver; Data : out Integer) is abstract;
7 procedure Display (Device : Transceiver) is abstract;
8
9end Drivers_Base;

drivers_1.ads

 1with Drivers_Base;
 2
 3package Drivers_1 is
 4
 5 type Transceiver is new Drivers_Base.Transceiver with null record;
 6
 7 procedure Send (Device : Transceiver; Data : Integer);
 8 procedure Receive (Device : Transceiver; Data : out Integer);
 9 procedure Display (Device : Transceiver);
10
11end Drivers_1;

drivers_1.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Drivers_1 is
 4
 5 procedure Send (Device : Transceiver; Data : Integer) is null;
 6
 7 procedure Receive (Device : Transceiver; Data : out Integer) is
 8 pragma Unreferenced (Device);
 9 begin
10 Data := 42;
11 end Receive;
12
13 procedure Display (Device : Transceiver) is
14 pragma Unreferenced (Device);
15 begin
16 Put_Line ("Using Drivers_1");
17 end Display;
18
19end Drivers_1;

drivers_2.ads

 1with Drivers_Base;
 2
 3package Drivers_2 is
 4
 5 type Transceiver is new Drivers_Base.Transceiver with null record;
 6
 7 procedure Send (Device : Transceiver; Data : Integer);
 8 procedure Receive (Device : Transceiver; Data : out Integer);
 9 procedure Display (Device : Transceiver);
10
11end Drivers_2;

drivers_2.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Drivers_2 is
 4
 5 procedure Send (Device : Transceiver; Data : Integer) is null;
 6
 7 procedure Receive (Device : Transceiver; Data : out Integer) is
 8 pragma Unreferenced (Device);
 9 begin
10 Data := 7;
11 end Receive;
12
13 procedure Display (Device : Transceiver) is
14 pragma Unreferenced (Device);
15 begin
16 Put_Line ("Using Drivers_2");
17 end Display;
18
19end Drivers_2;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Drivers_Base;
 4with Drivers_1;
 5with Drivers_2;
 6
 7procedure Main is
 8 D1 : aliased Drivers_1.Transceiver;
 9 D2 : aliased Drivers_2.Transceiver;
10 D : access Drivers_Base.Transceiver'Class;
11
12 I : Integer;
13
14 type Driver_Number is range 1 .. 2;
15
16 procedure Select_Driver (N : Driver_Number) is
17 begin
18 if N = 1 then
19 D := D1'Access;
20 else
21 D := D2'Access;
22 end if;
23 D.Display;
24 end Select_Driver;
25
26begin
27 Select_Driver (1);
28 D.Send (999);
29 D.Receive (I);
30 Put_Line (Integer'Image (I));
31
32 Select_Driver (2);
33 D.Send (999);
34 D.Receive (I);
35 Put_Line (Integer'Image (I));
36end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Drivers
MD5: d823b7231f1adf003fb6f545cb482308

Runtime output

Using Drivers_1
 42
Using Drivers_2
 7

In this example, we declare the Transceiver interface in the
Drivers_Base package. This interface is then used to derive the tagged
types Transceiver from both Drivers_1 and Drivers_2
packages.

In the Main procedure, we use the access to Transceiver'Class
— from the interface declared in the Drivers_Base package —
to declare D. This object D contains the access to the actual
driver loaded at any specific time. We select the driver at runtime in the
inner Select_Driver procedure, which initializes D (with the
access to the selected driver). Then, any operation on D triggers a
dispatching call to the selected driver.

Further resources

In the appendices, we have a step-by-step
hands-on overview of object-oriented programming that
discusses how to translate a simple system written in C to an equivalent
system in Ada using object-oriented programming.

Pointer to subprograms

Pointers to subprograms allow us to dynamically select an appropriate
subprogram at runtime. This selection might be triggered by an external
event, or simply by the user. This can be useful when multiple versions of a
routine exist, and the decision about which one to use cannot be made at
compilation time.

This is an example on how to declare and use pointers to functions in C:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4void show_msg_v1 (char *msg)
 5{
 6 printf("Using version #1: %s\n", msg);
 7}
 8
 9void show_msg_v2 (char *msg)
10{
11 printf("Using version #2:\n %s\n", msg);
12}
13
14int main()
15{
16 int selection = 1;
17 void (*current_show_msg) (char *);
18
19 switch (selection)
20 {
21 case 1: current_show_msg = &show_msg_v1; break;
22 case 2: current_show_msg = &show_msg_v2; break;
23 default: current_show_msg = NULL; break;
24 }
25
26 if (current_show_msg != NULL)
27 {
28 current_show_msg ("Hello there!");
29 }
30 else
31 {
32 printf("ERROR: no version of show_msg() selected!\n");
33 }
34
35 return 0;
36}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Selecting_Subprogram_C
MD5: 414c99fca2490611d20d031f8549ff59

Runtime output

Using version #1: Hello there!

The example above contains two versions of the show_msg() function:
show_msg_v1() and show_msg_v2(). The function is selected depending
on the value of selection, which initializes the function pointer
current_show_msg. If there's no corresponding value, current_show_msg
is set to null — alternatively, we could have selected a default
version of show_msg() function. By calling
current_show_msg ("Hello there!"), we're calling the function that
current_show_msg is pointing to.

This is the corresponding implementation in Ada:

[Ada]

show_subprogram_selection.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Subprogram_Selection is
 4
 5 procedure Show_Msg_V1 (Msg : String) is
 6 begin
 7 Put_Line ("Using version #1: " & Msg);
 8 end Show_Msg_V1;
 9
10 procedure Show_Msg_V2 (Msg : String) is
11 begin
12 Put_Line ("Using version #2: ");
13 Put_Line (Msg);
14 end Show_Msg_V2;
15
16 type Show_Msg_Proc is access procedure (Msg : String);
17
18 Current_Show_Msg : Show_Msg_Proc;
19 Selection : Natural;
20
21begin
22 Selection := 1;
23
24 case Selection is
25 when 1 => Current_Show_Msg := Show_Msg_V1'Access;
26 when 2 => Current_Show_Msg := Show_Msg_V2'Access;
27 when others => Current_Show_Msg := null;
28 end case;
29
30 if Current_Show_Msg /= null then
31 Current_Show_Msg ("Hello there!");
32 else
33 Put_Line ("ERROR: no version of Show_Msg selected!");
34 end if;
35
36end Show_Subprogram_Selection;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Selecting_Subprogram_Ada
MD5: ee41e042e3b879b4a2671bfe6d8072aa

Runtime output

Using version #1: Hello there!

The structure of the code above is very similar to the one used in the C code.
Again, we have two version of Show_Msg: Show_Msg_V1 and
Show_Msg_V2. We set Current_Show_Msg according to the value of
Selection. Here, we use 'Access to get access to the
corresponding procedure. If no version of Show_Msg is available, we set
Current_Show_Msg to null.

Pointers to subprograms are also typically used as callback functions. This
approach is extensively used in systems that process events, for example. Here,
we could have a two-layered system:

	A layer of the system (an event manager) triggers events depending on
information from sensors.

	For each event, callback functions can be registered.

	The event manager calls registered callback functions when an event is
triggered.

	Another layer of the system registers callback functions for specific events
and decides what to do when those events are triggered.

This approach promotes information hiding and component decoupling because:

	the layer of the system responsible for managing events doesn't need to know
what the callback function actually does, while

	the layer of the system that implements callback functions remains
agnostic to implementation details of the event manager — for example,
how events are implemented in the event manager.

Let's see an example in C where we have a process_values() function that
calls a callback function (process_one) to process a list of values:

[C]

process_values.h

1typedef int (*process_one_callback) (int);
2
3void process_values (int *values,
4 int len,
5 process_one_callback process_one);

process_values.c

 1#include "process_values.h"
 2
 3#include <assert.h>
 4#include <stdio.h>
 5
 6void process_values (int *values,
 7 int len,
 8 process_one_callback process_one)
 9{
10 int i;
11
12 assert (process_one != NULL);
13
14 for (i = 0; i < len; i++)
15 {
16 values[i] = process_one (values[i]);
17 }
18}

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#include "process_values.h"
 5
 6int proc_10 (int val)
 7{
 8 return val + 10;
 9}
10
11# define LEN_VALUES 5
12
13int main()
14{
15
16 int values[LEN_VALUES] = { 1, 2, 3, 4, 5 };
17 int i;
18
19 process_values (values, LEN_VALUES, &proc_10);
20
21 for (i = 0; i < LEN_VALUES; i++)
22 {
23 printf("Value [%d] = %d\n", i, values[i]);
24 }
25
26 return 0;
27}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Callback_C
MD5: ff5c8611d0901f40b6c4a9effeb0a323

Runtime output

Value [0] = 11
Value [1] = 12
Value [2] = 13
Value [3] = 14
Value [4] = 15

As mentioned previously, process_values() doesn't have any knowledge about
what process_one() does with the integer value it receives as a parameter.
Also, we could replace proc_10() by another function without having to
change the implementation of process_values().

Note that process_values() calls an assert() for the function
pointer to compare it against null. Here, instead of checking the validity
of the function pointer, we're expecting the caller of process_values()
to provide a valid pointer.

This is the corresponding implementation in Ada:

[Ada]

values_processing.ads

 1package Values_Processing is
 2
 3 type Integer_Array is array (Positive range <>) of Integer;
 4
 5 type Process_One_Callback is not null access
 6 function (Value : Integer) return Integer;
 7
 8 procedure Process_Values (Values : in out Integer_Array;
 9 Process_One : Process_One_Callback);
10
11end Values_Processing;

values_processing.adb

 1package body Values_Processing is
 2
 3 procedure Process_Values (Values : in out Integer_Array;
 4 Process_One : Process_One_Callback) is
 5 begin
 6 for I in Values'Range loop
 7 Values (I) := Process_One (Values (I));
 8 end loop;
 9 end Process_Values;
10
11end Values_Processing;

proc_10.ads

1function Proc_10 (Value : Integer) return Integer;

proc_10.adb

1function Proc_10 (Value : Integer) return Integer is
2begin
3 return Value + 10;
4end Proc_10;

show_callback.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Values_Processing; use Values_Processing;
 4with Proc_10;
 5
 6procedure Show_Callback is
 7 Values : Integer_Array := (1, 2, 3, 4, 5);
 8begin
 9 Process_Values (Values, Proc_10'Access);
10
11 for I in Values'Range loop
12 Put_Line ("Value ["
13 & Positive'Image (I)
14 & "] = "
15 & Integer'Image (Values (I)));
16 end loop;
17end Show_Callback;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Callback_Ada
MD5: f49c54f0d14193d305c0e962a392ab67

Runtime output

Value [1] = 11
Value [2] = 12
Value [3] = 13
Value [4] = 14
Value [5] = 15

Similar to the implementation in C, the Process_Values procedure
receives the access to a callback routine, which is then called for each value
of the Values array.

Note that the declaration of Process_One_Callback makes use of the
not null access declaration. By using this approach, we ensure that
any parameter of this type has a valid value, so we can always call the
callback routine.

Design by components using dynamic libraries

In the previous sections, we have shown how to use packages to create separate
components of a system. As we know, when designing a complex system, it is
advisable to separate concerns into distinct units, so we can use Ada packages
to represent each unit of a system. In this section, we go one step further and
create separate dynamic libraries for each component, which we'll then link to
the main application.

Let's suppose we have a main system (Main_System) and a
component A (Component_A) that we want to use in the main system. For
example:

[Ada]

component_a.ads

 1--
 2-- File: component_a.ads
 3--
 4package Component_A is
 5
 6 type Float_Array is array (Positive range <>) of Float;
 7
 8 function Average (Data : Float_Array) return Float;
 9
10end Component_A;

component_a.adb

 1--
 2-- File: component_a.adb
 3--
 4package body Component_A is
 5
 6 function Average (Data : Float_Array) return Float is
 7 Total : Float := 0.0;
 8 begin
 9 for Value of Data loop
10 Total := Total + Value;
11 end loop;
12 return Total / Float (Data'Length);
13 end Average;
14
15end Component_A;

main_system.adb

 1--
 2-- File: main_system.adb
 3--
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6with Component_A; use Component_A;
 7
 8procedure Main_System is
 9 Values : constant Float_Array := (10.0, 11.0, 12.0, 13.0);
10 Average_Value : Float;
11begin
12 Average_Value := Average (Values);
13 Put_Line ("Average = " & Float'Image (Average_Value));
14end Main_System;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.System_For_Dyn_Lib
MD5: d759132b787e636d4bcd5f8cd6393f2a

Runtime output

Average = 1.15000E+01

Note that, in the source-code example above, we're indicating the name of each
file. We'll now see how to organize those files in a structure that is suitable
for the GNAT build system (GPRbuild).

In order to discuss how to create dynamic libraries, we need to dig into some
details about the build system. With GNAT, we can use project files for
GPRbuild to easily design dynamic libraries. Let's say we use the
following directory structure for the code above:

|- component_a
| | component_a.gpr
| |- src
| | | component_a.adb
| | | component_a.ads
|- main_system
| | main_system.gpr
| |- src
| | | main_system.adb

Here, we have two directories: component_a and main_system. Each directory
contains a project file (with the .gpr file extension) and a source-code
directory (src).

In the source-code example above, we've seen the content of files
component_a.ads, component_a.adb and main_system.adb.
Now, let's discuss how to write the project file for Component_A
(component_a.gpr), which will build the dynamic library for this
component:

library project Component_A is

 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Create_Missing_Dirs use "True";
 for Library_Name use "component_a";
 for Library_Kind use "dynamic";
 for Library_Dir use "lib";

end Component_A;

The project is defined as a library project instead of project. This tells
GPRbuild to build a library instead of an executable binary. We then
specify the library name using the Library_Name attribute, which is required,
so it must appear in a library project. The next two library-related attributes
are optional, but important for our use-case. We use:

	Library_Kind to specify that we want to create a dynamic library —
by default, this attribute is set to static;

	Library_Dir to specify the directory where the library is stored.

In the project file of our main system (main_system.gpr), we just need
to reference the project of Component_A using a with clause and
indicating the correct path to that project file:

with "../component_a/component_a.gpr";

project Main_System is
 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Create_Missing_Dirs use "True";
 for Main use ("main_system.adb");
end Main_System;

GPRbuild takes care of selecting the correct settings to link the
dynamic library created for Component_A with the main application
(Main_System) and build an executable.

We can use the same strategy to create a Component_B and dynamically
link to it in the Main_System. We just need to create the separate
structure for this component — with the appropriate Ada packages and
project file — and include it in the project file of the main system
using a with clause:

with "../component_a/component_a.gpr";
with "../component_b/component_b.gpr";

...

Again, GPRbuild takes care of selecting the correct settings to link
both dynamic libraries together with the main application.

You can find more details and special setting for library projects in the
GPRbuild documentation[#2].

In the GNAT toolchain

The GNAT toolchain includes a more advanced example focusing on how to load
dynamic libraries at runtime. You can find it in the
share/examples/gnat/plugins directory of the GNAT toolchain
installation. As described in the README file from that directory, this
example "comprises a main program which probes regularly for the existence
of shared libraries in a known location. If such libraries are present, it
uses them to implement features initially not present in the main program."

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-H-4.html

[#2]
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug/gnat_project_manager.html#library-projects

Performance considerations

Overall expectations

All in all, there should not be significant performance differences between
code written in Ada and code written in C, provided that they are semantically
equivalent. Taking the current GNAT implementation and its GCC C counterpart
for example, most of the code generation and optimization phases are shared
between C and Ada — so there's not one compiler more efficient than the
other. Furthermore, the two languages are fairly similar in the way they
implement imperative semantics, in particular with regards to memory management
or control flow. They should be equivalent on average.

When comparing the performance of C and Ada code, differences might be
observed. This usually comes from the fact that, while the two piece appear
semantically equivalent, they happen to be actually quite different; C code
semantics do not implicitly apply the same run-time checks that Ada does.
This section will present common ways for improving Ada code performance.

Switches and optimizations

Clever use of compilation switches might optimize the performance of an
application significantly. In this section, we'll briefly look into some of
the switches available in the GNAT toolchain.

Optimizations levels

Optimization levels can be found in many compilers for multiple languages. On
the lowest level, the GNAT compiler doesn't optimize the code at all, while at
the higher levels, the compiler analyses the code and optimizes it by removing
unnecessary operations and making the most use of the target processor's
capabilities.

By being part of GCC, GNAT offers the same -O_ switches as GCC:

	Switch

	Description

	-O0

	No optimization: the generated code is completely
unoptimized. This is the default optimization level.

	-O1

	Moderate optimization.

	-O2

	Full optimization.

	-O3

	Same optimization level as for -O2. In addition, further
optimization strategies, such as aggressive automatic
inlining and vectorization.

Note that the higher the level, the longer the compilation time. For
fast compilation during development phase, unless you're working on
benchmarking algorithms, using -O0 is probably a good idea.

In addition to the levels presented above, GNAT also has the -Os switch,
which allows for optimizing code and data usage.

Inlining

As we've seen in the previous section, automatic inlining depends on the
optimization level. The highest optimization level (-O3), for example,
performs aggressive automatic inlining. This could mean that this level inlines
too much rather than not enough. As a result, the cache may become an issue and
the overall performance may be worse than the one we would achieve by compiling
the same code with optimization level 2 (-O2). Therefore, the general
recommendation is to not just select -O3 for the optimized version of an
application, but instead compare it the optimized version built with -O2.

In some cases, it's better to reduce the optimization level and perform manual
inlining instead of automatic inlining. We do that by using the Inline
aspect. Let's reuse an example from a previous chapter and inline the
Average function:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float
6 with Inline;
7
8end Float_Arrays;

float_arrays.adb

 1package body Float_Arrays is
 2
 3 function Average (Data : Float_Array) return Float is
 4 Total : Float := 0.0;
 5 begin
 6 for Value of Data loop
 7 Total := Total + Value;
 8 end loop;
 9 return Total / Float (Data'Length);
10 end Average;
11
12end Float_Arrays;

compute_average.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Arrays; use Float_Arrays;
 4
 5procedure Compute_Average is
 6 Values : constant Float_Array := (10.0, 11.0, 12.0, 13.0);
 7 Average_Value : Float;
 8begin
 9 Average_Value := Average (Values);
10 Put_Line ("Average = " & Float'Image (Average_Value));
11end Compute_Average;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Inlining
MD5: faf9d0d8cd5aefd7a48bcd950b1256fa

Runtime output

Average = 1.15000E+01

When compiling this example, GNAT will inline Average in the
Compute_Average procedure.

In order to effectively use this aspect, however, we need to set the
optimization level to at least -O1 and use the -gnatn switch, which
instructs the compiler to take the Inline aspect into account.

Note, however, that the Inline aspect is just a recommendation to the
compiler. Sometimes, the compiler might not be able to follow this
recommendation, so it won't inline the subprogram. In this case, we get a
compilation warning from GNAT.

These are some examples of situations where the compiler might not be able to
inline a subprogram:

	when the code is too large,

	when it's too complicated — for example, when it involves exception
handling —, or

	when it contains tasks, etc.

In addition to the Inline aspect, we also have the Inline_Always
aspect. In contrast to the former aspect, however, the Inline_Always
aspect isn't primarily related to performance. Instead, it should be used when
the functionality would be incorrect if inlining was not performed by the
compiler. Examples of this are procedures that insert Assembly instructions
that only make sense when the procedure is inlined, such as memory barriers.

Similar to the Inline aspect, there might be situations where a
subprogram has the Inline_Always aspect, but the compiler is unable to
inline it. In this case, we get a compilation error from GNAT.

Checks and assertions

Checks

Ada provides many runtime checks to ensure that the implementation is working
as expected. For example, when accessing an array, we would like to make sure
that we're not accessing a memory position that is not allocated for that
array. This is achieved by an index check.

Another example of runtime check is the verification of valid ranges. For
example, when adding two integer numbers, we would like to ensure that the
result is still in the valid range — that the value is neither too large
nor too small. This is achieved by an range check. Likewise, arithmetic operations
shouldn't overflow or underflow. This is achieved by an overflow check.

Although runtime checks are very useful and should be used as much as possible,
they can also increase the overhead of implementations at certain hot-spots.
For example, checking the index of an array in a sorting algorithm may
significantly decrease its performance. In those cases, suppressing the check
may be an option. We can achieve this suppression by using
pragma Suppress (Index_Check). For example:

[Ada]

procedure Sort (A : in out Integer_Array) is
 pragma Suppress (Index_Check);
begin
 -- (implementation removed...)
 null;
end Sort;

In case of overflow checks, we can use pragma Suppress (Overflow_Check)
to suppress them:

function Some_Computation (A, B : Int32) return Int32 is
 pragma Suppress (Overflow_Check);
begin
 -- (implementation removed...)
 null;
end Sort;

We can also deactivate overflow checks for integer types using the -gnato
switch when compiling a source-code file with GNAT. In this case, overflow
checks in the whole file are deactivated.

It is also possible to suppress all checks at once using
pragma Suppress (All_Checks). In addition, GNAT offers a compilation
switch called -gnatp, which has the same effect on the whole file.

Note, however, that this kind of suppression is just a recommendation to the
compiler. There's no guarantee that the compiler will actually suppress any of
the checks because the compiler may not be able to do so — typically
because the hardware happens to do it. For example, if the machine traps on any
access via address zero, requesting the removal of null access value checks in
the generated code won't prevent the checks from happening.

It is important to differentiate between required and redundant checks. Let's
consider the following example in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 8, b = 0, res;
 6
 7 res = a / b;
 8
 9 // printing the result
10 printf("res = %d\n", res);
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_C
MD5: c8d95cbdd76618108119886c27ce7eb6

Because C doesn't have language-defined checks, as soon as the application
tries to divide a value by zero in res = a / b, it'll break — on
Linux, for example, you may get the following error message by the operating
system: Floating point exception (core dumped). Therefore, we need to
manually introduce a check for zero before this operation. For example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 8, b = 0, res;
 6
 7 if (b != 0) {
 8 res = a / b;
 9
10 // printing the result
11 printf("res = %d\n", res);
12 }
13 else
14 {
15 // printing error message
16 printf("Error: cannot calculate value (division by zero)\n");
17 }
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Check_C
MD5: 67ea0140d8248674b4aac06825c7cdbe

Runtime output

Error: cannot calculate value (division by zero)

This is the corresponding code in Ada:

[Ada]

show_division_by_zero.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Division_By_Zero is
 4 A : Integer := 8;
 5 B : Integer := 0;
 6 Res : Integer;
 7begin
 8 Res := A / B;
 9
10 Put_Line ("Res = " & Integer'Image (Res));
11end Show_Division_By_Zero;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Ada
MD5: 2af6690eb977203ef7ce2178d15255af

Build output

show_division_by_zero.adb:8:15: warning: division by zero [enabled by default]
show_division_by_zero.adb:8:15: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_division_by_zero.adb:8 divide by zero

Similar to the first version of the C code, we're not explicitly checking for a
potential division by zero here. In Ada, however, this check is automatically
inserted by the language itself. When running the application above, an
exception is raised when the application tries to divide the value in A
by zero. We could introduce exception handling in our example, so that we get
the same message as we did in the second version of the C code:

[Ada]

show_division_by_zero.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Division_By_Zero is
 4 A : Integer := 8;
 5 B : Integer := 0;
 6 Res : Integer;
 7begin
 8 Res := A / B;
 9
10 Put_Line ("Res = " & Integer'Image (Res));
11exception
12 when Constraint_Error =>
13 Put_Line ("Error: cannot calculate value (division by zero)");
14 when others =>
15 null;
16end Show_Division_By_Zero;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Check_Ada
MD5: a96a94c15fda5f6c5feb232d615b1ea3

Build output

show_division_by_zero.adb:8:15: warning: division by zero [enabled by default]
show_division_by_zero.adb:8:15: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

Error: cannot calculate value (division by zero)

This example demonstrates that the division check for Res := A / B is
required and shouldn't be suppressed. In contrast, a check is redundant —
and therefore not required — when we know that the condition that leads
to a failure can never happen. In many cases, the compiler itself detects
redundant checks and eliminates them (for higher optimization levels).
Therefore, when improving the performance of your application, you should:

	keep all checks active for most parts of the application;

	identify the hot-spots of your application;

	identify which checks haven't been eliminated by the optimizer on these
hot-spots;

	identify which of those checks are redundant;

	only suppress those checks that are redundant, and keep the required ones.

Assertions

We've already discussed assertions in
this section of the SPARK chapter.
Assertions are user-defined checks that you can add to your code using the
pragma Assert. For example:

[Ada]

function Some_Computation (A, B : Int32) return Int32 is
 Res : Int32;
begin
 -- (implementation removed...)

 pragma Assert (Res >= 0);

 return Res;
end Sort;

Assertions that are specified with pragma Assert are not enabled by
default. You can enable them by setting the assertion policy to check —
using pragma Assertion_Policy (Check) — or by using the -gnata
switch when compiling with GNAT.

Similar to the checks discussed previously, assertions can generate significant
overhead when used at hot-spots. Restricting those assertions to development
(e.g. debug version) and turning them off on the release version may be an
option. In this case, formal proof — as discussed in the
SPARK chapter — can help you. By formally proving that
assertions will never fail at run-time, you can safely deactivate them.

Dynamic vs. static structures

Ada generally speaking provides more ways than C or C++ to write simple dynamic
structures, that is to say structures that have constraints computed after
variables. For example, it's quite typical to have initial values in record
types:

[Ada]

type R is record
 F : Some_Field := Call_To_Some_Function;
end record;

However, the consequences of the above is that any declaration of a instance of
this type without an explicit value for F will issue a call to
Call_To_Some_Function. More subtle issue may arise with elaboration. For
example, it's possible to write:

some_functions.ads

1package Some_Functions is
2
3 function Some_Function_Call return Integer is (2);
4
5 function Some_Other_Function_Call return Integer is (10);
6
7end Some_Functions;

values.ads

1with Some_Functions; use Some_Functions;
2
3package Values is
4 A_Start : Integer := Some_Function_Call;
5 A_End : Integer := Some_Other_Function_Call;
6end Values;

arr_def.ads

1with Values; use Values;
2
3package Arr_Def is
4 type Arr is array (Integer range A_Start .. A_End) of Integer;
5end Arr_Def;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Dynamic_Array
MD5: 0c97cecb64d27e935724c8b5f941fb4f

It may indeed be appealing to be able to change the values of A_Start
and A_End at startup so as to align a series of arrays dynamically. The
consequence, however, is that these values will not be known statically, so any
code that needs to access to boundaries of the array will need to read data
from memory. While it's perfectly fine most of the time, there may be
situations where performances are so critical that static values for array
boundaries must be enforced.

Here's a last case which may also be surprising:

[Ada]

arr_def.ads

1package Arr_Def is
2 type Arr is array (Integer range <>) of Integer;
3
4 type R (D1, D2 : Integer) is record
5 F1 : Arr (1 .. D1);
6 F2 : Arr (1 .. D2);
7 end record;
8end Arr_Def;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Record_With_Arrays
MD5: e7b2656433279d36db87506276b68398

In the code above, R contains two arrays, F1 and F2,
respectively constrained by the discriminant D1 and D2. The
consequence is, however, that to access F2, the run-time needs to know
how large F1 is, which is dynamically constrained when creating an
instance. Therefore, accessing to F2 requires a computation involving
D1 which is slower than, let's say, two pointers in an C array that
would point to two different arrays.

Generally speaking, when values are used in data structures, it's useful to
always consider where they're coming from, and if their value is static
(computed by the compiler) or dynamic (only known at run-time). There's nothing
fundamentally wrong with dynamically constrained types, unless they appear in
performance-critical pieces of the application.

Pointers vs. data copies

In the section about pointers, we mentioned that the
Ada compiler will automatically pass parameters by reference when
needed. Let's look into what "when needed" means. The fundamental point
to understand is that the parameter types determine how the parameters
are passed in and/or out. The parameter modes do not control how parameters
are passed.

Specifically, the language standards specifies that scalar types are
always passed by value, and that some other types are always passed by
reference. It would not make sense to make a copy of a task when passing
it as a parameter, for example. So parameters that can be passed
reasonably by value will be, and those that must be passed by reference
will be. That's the safest approach.

But the language also specifies that when the parameter is an array type
or a record type, and the record/array components are all by-value
types, then the compiler decides: it can pass the parameter using either
mechanism. The critical case is when such a parameter is large, e.g., a
large matrix. We don't want the compiler to pass it by value because
that would entail a large copy, and indeed the compiler will not do so.
But if the array or record parameter is small, say the same size as an
address, then it doesn't matter how it is passed and by copy is just as
fast as by reference. That's why the language gives the choice to the
compiler. Although the language does not mandate that large parameters
be passed by reference, any reasonable compiler will do the right thing.

The modes do have an effect, but not in determining how the parameters
are passed. Their effect, for parameters passed by value, is to
determine how many times the value is copied. For mode in and
mode out there is just one copy. For mode in out there
will be two copies, one in each direction.

Therefore, unlike C, you don't have to use access types in Ada to get
better performance when passing arrays or records to subprograms. The
compiler will almost certainly do the right thing for you.

Let's look at this example:

[C]

main.c

 1#include <stdio.h>
 2
 3struct Data {
 4 int prev, curr;
 5};
 6
 7void update(struct Data *d,
 8 int v)
 9{
10 d->prev = d->curr;
11 d->curr = v;
12}
13
14void display(const struct Data *d)
15{
16 printf("Prev : %d\n", d->prev);
17 printf("Curr : %d\n", d->curr);
18}
19
20int main(int argc, const char * argv[])
21{
22 struct Data D1 = { 0, 1 };
23
24 update (&D1, 3);
25 display (&D1);
26
27 return 0;
28}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Rec_By_Reference_C
MD5: 9087e26168e49d095b5e0776d6330d69

Runtime output

Prev : 1
Curr : 3

In this C code example, we're using pointers to pass D1 as a reference to
update and display. In contrast, the equivalent code in Ada simply
uses the parameter modes to specify the data flow directions. The mechanisms
used to pass the values do not appear in the source code.

[Ada]

update_record.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Update_Record is
 4
 5 type Data is record
 6 Prev : Integer;
 7 Curr : Integer;
 8 end record;
 9
10 procedure Update (D : in out Data;
11 V : Integer) is
12 begin
13 D.Prev := D.Curr;
14 D.Curr := V;
15 end Update;
16
17 procedure Display (D : Data) is
18 begin
19 Put_Line ("Prev: " & Integer'Image (D.Prev));
20 Put_Line ("Curr: " & Integer'Image (D.Curr));
21 end Display;
22
23 D1 : Data := (0, 1);
24
25begin
26 Update (D1, 3);
27 Display (D1);
28end Update_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Rec_By_Reference_Ada
MD5: 6c64fb73e2cf490c0a129f0cd73c190b

Runtime output

Prev: 1
Curr: 3

In the calls to Update and Display, D1 is always be passed
by reference. Because no extra copy takes place, we get a performance that is
equivalent to the C version. If we had used arrays in the example above,
D1 would have been passed by reference as well:

[Ada]

update_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Update_Array is
 4
 5 type Data_State is (Prev, Curr);
 6 type Data is array (Data_State) of Integer;
 7
 8 procedure Update (D : in out Data;
 9 V : Integer) is
10 begin
11 D (Prev) := D (Curr);
12 D (Curr) := V;
13 end Update;
14
15 procedure Display (D : Data) is
16 begin
17 Put_Line ("Prev: " & Integer'Image (D (Prev)));
18 Put_Line ("Curr: " & Integer'Image (D (Curr)));
19 end Display;
20
21 D1 : Data := (0, 1);
22
23begin
24 Update (D1, 3);
25 Display (D1);
26end Update_Array;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Array_By_Reference_Ada
MD5: 5fb27811f34543fc4150eb4fddbe7034

Runtime output

Prev: 1
Curr: 3

Again, no extra copy is performed in the calls to Update and
Display, which gives us optimal performance when dealing with arrays and
avoids the need to use access types to optimize the code.

Function returns

Previously, we've discussed the cost of passing complex records as
arguments to subprograms. We've seen that we don't have to use explicit
access type parameters to get better performance in Ada. In this
section, we'll briefly discuss the cost of function returns.

In general, we can use either procedures or functions to initialize a
data structure. Let's look at this example in C:

[C]

main.c

 1#include <stdio.h>
 2
 3struct Data {
 4 int prev, curr;
 5};
 6
 7void init_data(struct Data *d)
 8{
 9 d->prev = 0;
10 d->curr = 1;
11}
12
13struct Data get_init_data()
14{
15 struct Data d = { 0, 1 };
16
17 return d;
18}
19
20int main(int argc, const char * argv[])
21{
22 struct Data D1;
23
24 D1 = get_init_data();
25
26 init_data(&D1);
27
28 return 0;
29}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Rec_Proc_And_Func_C
MD5: 0586636d5e25c0d6bec2257af75ae998

This code example contains two subprograms that initialize the Data
structure:

	init_data(), which receives the data structure as a reference (using
a pointer) and initializes it, and

	get_init_data(), which returns the initialized structure.

In C, we generally avoid implementing functions such as get_init_data()
because of the extra copy that is needed for the function return.

This is the corresponding implementation in Ada:

[Ada]

init_record.adb

 1procedure Init_Record is
 2
 3 type Data is record
 4 Prev : Integer;
 5 Curr : Integer;
 6 end record;
 7
 8 procedure Init (D : out Data) is
 9 begin
10 D := (Prev => 0, Curr => 1);
11 end Init;
12
13 function Init return Data is
14 D : constant Data := (Prev => 0, Curr => 1);
15 begin
16 return D;
17 end Init;
18
19 D1 : Data;
20
21 pragma Unreferenced (D1);
22begin
23 D1 := Init;
24
25 Init (D1);
26end Init_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Rec_Proc_And_Func_Ada
MD5: 0f930eea432a82d78840b72c0714b283

Build output

init_record.adb:25:10: warning: aspect Unreferenced specified for "D1" [enabled by default]

In this example, we have two versions of Init: one using a
procedural form, and the other one using a functional form. Note that,
because of Ada's support for subprogram overloading, we can use the same
name for both subprograms.

The issue is that assignment of a function result entails a copy, just
as if we assigned one variable to another. For example, when assigning a
function result to a constant, the function result is copied into the
memory for the constant. That's what is happening in the above examples
for the initialized variables.

Therefore, in terms of performance, the same recommendations apply: for
large types we should avoid writing functions like the Init
function above. Instead, we should use the procedural form of
Init. The reason is that the compiler necessarily generates a
copy for the Init function, while the Init procedure uses
a reference for the output parameter, so that the actual record
initialization is performed in place in the caller's argument.

An exception to this is when we use functions returning values of
limited types, which by definition do not allow assignment. Here, to
avoid allowing something that would otherwise look suspiciously like an
assignment, the compiler generates the function body so that it builds
the result directly into the object being assigned. No copy takes place.

We could, for example, rewrite the example above using limited types:

[Ada]

init_limited_record.adb

 1procedure Init_Limited_Record is
 2
 3 type Data is limited record
 4 Prev : Integer;
 5 Curr : Integer;
 6 end record;
 7
 8 function Init return Data is
 9 begin
10 return D : Data do
11 D.Prev := 0;
12 D.Curr := 1;
13 end return;
14 end Init;
15
16 D1 : Data := Init;
17
18 pragma Unreferenced (D1);
19begin
20 null;
21end Init_Limited_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Lim_Rec_Proc_And_Func_Ada
MD5: 57fc1b3f69b42dd4633b0c67e252c2d2

In this example, D1 : Data := Init; has the same cost as the call to the
procedural form — Init (D1); — that we've seen in the
previous example. This is because the assignment is done in place.

Note that limited types require the use of the extended return statements
(return ... do ... end return) in function implementations. Also note
that, because the Data type is limited, we can only use the Init
function in the declaration of D1; a statement in the code such as
D1 := Init; is therefore forbidden.

Footnotes

Argumentation and Business Perspectives

The technical benefits of a migration from C to Ada are usually relatively
straightforward to demonstrate. Hopefully, this course provides a good basis
for it. However, when faced with an actual business decision to make,
additional considerations need to be taken into account, such as return on
investment, perennity of the solution, tool support, etc. This section will
cover a number of usual questions and provide elements of answers.

What's the expected ROI of a C to Ada transition?

Switching from one technology to another is a cost, may that be in terms of
training, transition of the existing environment or acquisition of new tools.
This investment needs to be matched with an expected return on investment, or
ROI, to be consistent. Of course, it's incredibly difficult to provide a firm
answer to how much money can be saved by transitioning, as this is highly
dependent on specific project objectives and constraints. We're going to
provide qualitative and quantitative arguments here, from the perspective of a
project that has to reach a relatively high level of integrity, that is to say
a system where the occurrence of a software failure is a relatively costly
event.

From a qualitative standpoint, there are various times in the software
development life cycle where defects can be found:

	on the developer's desk

	during component testing

	during integration testing

	after deployment

	during maintenance

Numbers from studies vary greatly on the relative costs of defects found at
each of these phases, but there's a clear ordering between them. For example,
a defect found while developing is orders of magnitude less expensive to fix
than a defect found e.g. at integration time, which may involve costly
debugging sessions and slow down the entire system acceptance. The whole
purpose of Ada and SPARK is to push defect detection to the developer's desk as
much as possible; at least for all of these defects that can be identified at
that level. While the strict act of writing software may be taking more effort
because of all of the additional safeguards, this should have a significant and
positive impact down the line and help to control costs overall. The exact
value this may translate into is highly business dependent.

From a quantitative standpoint, two studies have been done almost 25 years
apart and provide similar insights:

	Rational Software in 1995 found that the cost of developing software in Ada
was overall half as much as the cost of developing software in C.

	VDC ran a study in 2018, finding that the cost savings of developing with Ada
over C ranged from 6% to 38% in savings.

From a qualitative standpoint, in particular with regards to Ada and C from a
formal proof perspective, an interesting presentation was made in 2017 by two
researchers. They tried to apply formal proof on the same piece of code,
developed in Ada/SPARK on one end and C/Frama-C on the other. Their results
indicate that the Ada/SPARK technology is indeed more conducive to formal proof
methodologies.

Although all of these studies have their own biases, they provide a good idea
of what to expect in terms of savings once the initial investment in switching
to Ada is made. This is assuming everything else is equal, in particular that
the level of integrity is the same. In many situations, the migration to Ada is
justified by an increase in terms of integrity expectations, in which case it's
expected that development costs will rise (it's more expensive to develop
better software) and Ada is viewed as a means to mitigate this rise in
development costs.

That being said, the point of this argument is not to say that it's not
possible to write very safe and secure software with languages different than
Ada. With the right expertise, the right processes and the right tools, it's
done every day. The point is that Ada overall reduces the level of processes,
expertise and tools necessary and will allow to reach the same target at a
lower cost.

Who is using Ada today?

Ada was initially born as a DoD project, and thus got its initial customer base
in aerospace and defence (A&D). At the time these lines are written and from
the perspective of AdaCore, A&D is still the largest consumer of Ada today and
covers about 70% of the market. This creates a consistent and long lasting set
of established users as these project last often for decades, using the same
codebase migrating from platform to platform.

More recently however, there has been an emerging interest for Ada in new
communities of users such as automotive, medical device, industrial automation
and overall cyber-security. This can probably be explained by a rise of safety,
reliability and cyber-security requirements. The market is moving relatively
rapidly today and we're anticipating an increase of the Ada footprint in these
domains, while still remaining a technology of choice for the development of
mission critical software.

What is the future of the Ada technology?

The first piece of the answer lies in the user base of the Ada language, as
seen in the previous question. Projects using Ada in the aerospace and defence
domain maintain source code over decades, providing healthy funding foundation
for Ada-based technologies.

AdaCore being the author of this course, it's difficult for us to be fair in
our description of other Ada compilation technologies. We will leave to the
readers the responsibility of forging their own opinion. If they present a
credible alternative to the GNAT compiler, then this whole section can be
considered as void.

Assuming GNAT is the only option available, and acknowledging that this is an
argument that we're hearing from a number of Ada adopters, let's discuss the
"sole source" issue.

First of all, it's worth noting that industries are using a lot of software
that is provided by only one source, so while non-ideal, these
situations are also quite common.

In the case of the GNAT compiler however, while AdaCore is the main maintainer,
this maintenance is done as part of an open-source community. This means that
nothing prevents a third party to start selling a competing set of products
based on the same compiler, provided that it too adopts the open-source
approach. Our job is to be more cost-effective than the alternative, and indeed
for the vast part this has prevented a competing offering to emerge. However,
should AdaCore disappear or switch focus, Ada users would not be prevented from
carrying on using its software (there is no lock) and a third party could take
over maintenance. This is not a theoretical case, this has been done in the
past either by companies looking at supporting their own version of GNAT,
vendors occupying a specific niche that was left uncovered , or hobbyists
developing their own builds.

With that in mind, it's clear that the "sole source" provider issue is a
circumstantial — nothing is preventing other vendors from emerging if the
conditions are met.

Is the Ada toolset complete?

A language by itself is of little use for the development of safety-critical
software. Instead, a complete toolset is needed to accompany the development
process, in particular tools for edition, testing, static analysis, etc.

AdaCore provides a number of these tools either in through its core or add-on
package. These include (as of 2019):

	An IDE (GNAT Studio)

	An Eclipse plug-in (GNATbench)

	A debugger (GDB)

	A testing tool (GNATtest)

	A structural code coverage tool (GNATcoverage)

	A metric computation tool (GNATmetric)

	A coding standard checker (GNATcheck)

	Static analysis tools (CodePeer, SPARK Pro)

	A Simulink code generator (QGen)

	An Ada parser to develop custom tools (libadalang)

Ada is, however, an internationally standardized language, and many companies
are providing third party solutions to complete the toolset. Overall, the
language can be and is used with tools on par with their equivalent C
counterparts.

Where can I find Ada or SPARK developers?

A common question from teams on the verge of selecting Ada and SPARK is how to
manage the developer team growth and turnover. While Ada and SPARK are taught
by a growing number of universities worldwide, it may still be challenging to
hire new staff with prior Ada experience.

Fortunately, Ada's base semantics are very close to those of C/C++, so that a
good embedded software developer should be able to learn it relatively easily.
This course is definitely a resource available to get started. Online training
material is also available, together with on-site in person training.

In general, getting an engineer operational in Ada and SPARK shouldn't take
more than a few weeks worth of time.

How to introduce Ada and SPARK in an existing code base?

The most common scenario when introducing Ada and SPARK to a project or a team
is to do it within a pre-existing C codebase, which can already spread over
hundreds of thousands if not millions lines of code. Re-writing this software
to Ada or SPARK is of course not practical and counterproductive.

Most teams select either a small piece of existing code which deserves
particular attention, or new modules to develop, and concentrate on this.
Developing this module or part of the application will also help in developing
the coding patterns to be used for the particular project and company. This
typically concentrates an effort of a few people on a few thousands lines of
code. The resulting code can be linked to the rest of the C application.
From there, the newly established practices and their benefit can slowly
spread through the rest of the environment.

Establishing this initial core in Ada and SPARK is critical, and while learning
the language isn't a particularly difficult task, applying it to its full
capacity may require some expertise. One possibility to accelerate this initial
process is to use AdaCore mentorship services.

Footnotes

Conclusion

Although Ada's syntax might seem peculiar to C developers at first glance, it
was designed to increase readability and maintainability, rather than making it
faster to write in a condensed manner — as it is often the case in C.

Especially in the embedded domain, C developers are used to working at a very
low level, which includes mathematical operations on pointers, complex bit
shifts, and logical bitwise operations. C is well designed for such operations
because it was designed to replace Assembly language for faster, more efficient
programming.

Ada can be used to describe high level semantics and architectures. The beauty
of the language, however, is that it can be used all the way down to the lowest
levels of the development, including embedded Assembly code or bit-level data
management. However, although Ada supports bitwise operations such as masks and
shifts, they should be relatively rarely needed. When translating C code to
Ada, it's good practice to consider alternatives. In a lot of cases, these
operations are used to insert several pieces of data into a larger structure.
In Ada, this can be done by describing the structure layout at the type level
through representation clauses, and then accessing this structure as any other.
For example, we can interpret an arbitrary data type as a bit-field and perform
low-level operations on it.

Because Ada is a strongly typed language, it doesn't define any implicit type
conversions like C. If we try to compile Ada code that contains type
mismatches, we'll get a compilation error. Because the compiler prevents
mixing variables of different types without explicit type conversion, we can't
accidentally end up in a situation where we assume something will happen
implicitly when, in fact, our assumption is incorrect. In this sense, Ada's
type system encourages programmers to think about data at a high level of
abstraction. Ada supports overlays and unchecked conversions as a way of
converting between unrelated data type, which are typically used for
interfacing with low-level elements such as registers.

In Ada, arrays aren't interchangeable with operations on pointers like in C.
Also, array types are considered first-class citizens and have dedicated
semantics such as the availability of the array's boundaries at run-time.
Therefore, unhandled array overflows are impossible unless checks are
suppressed. Any discrete type can serve as an array index, and we can specify
both the starting and ending bounds. In addition, Ada offers high-level
operations for copying, slicing, and assigning values to arrays.

Although Ada supports pointers, most situations that would require a pointer in
C do not in Ada. In the vast majority of the cases, indirect memory management
can be hidden from the developer and thus prevent many potential errors. In
C, pointers are typically used to pass references to subprograms, for example.
In contrast, Ada parameter modes indicate the flow of information to the
reader, leaving the means of passing that information to the compiler.

When translating pointers from C code to Ada, we need to assess whether they
are needed in the first place. Ada pointers (access types) should only be used
with complex structures that cannot be allocated at run-time. There are many
situations that would require a pointer in C, but do not in Ada. For example,
arrays — even when dynamically allocated —, results of functions,
passing of large structures as parameters, access to registers, etc.

Because of the absence of namespaces, global names in C tend to be very long.
Also, because of the absence of overloading, they can even encode type names in
their name. In Ada, a package is a namespace. Also, we can use the private part
of a package to declare private types and private subprograms. In fact, private
types are useful for preventing the users of those types from depending on the
implementation details. Another use-case is the prevention of package users
from accessing the package state/data arbitrarily.

Ada has a dedicated set of features for interfacing with other languages, so we
can easily interface with our existing C code before translating it to Ada.
Also, GNAT includes automatic binding generators. Therefore, instead of
re-writing the entire C code upfront, which isn't practical or
cost-effective, we can selectively translate modules from C to Ada.

When it comes to implementing concurrency and real time, Ada offers several
options. Ada provides high level constructs such as tasks and protected
objects to express concurrency and synchronization, which can be used when
running on top of an operating system such as Linux. On more constrained
systems, such as bare metal or some real-time operating systems, a subset of
the Ada tasking capabilities — known as the Ravenscar and Jorvik profiles
— is available. Though restricted, this subset also has nice properties,
in particular the absence of deadlock,the absence of priority inversion,
schedulability and very small footprint. On bare metal systems, this also
essentially means that Ada comes with its own real-time kernel. The advantage
of using the full Ada tasking model or the restricted profiles is to enhance
portability.

Ada includes many features typically used for embedded programming:

	Built-in support for handling interrupts, so we can process interrupts by
attaching a handler — as a protected procedure — to it.

	Built-in support for handling both volatile and atomic data.

	Support for register overlays, which we can use to create a structure that
facilitates manipulating bits from registers.

	Support for creating data streams for serialization of arbitrary information
and transmission over a communication channel, such as a serial port.

	Built-in support for fixed-point arithmetic, which is an option when our
target device doesn't have a floating-point unit or the result of
calculations needs to be bit-exact.

Also, Ada compilers such as GNAT have built-in support for directly mixing Ada
and Assembly code.

Ada also supports contracts, which can be associated with types and variables
to refine values and define valid and invalid values. The most common kind of
contract is a range constraint — using the range reserved word.
Ada also supports contract-based programming in the form of preconditions and
postconditions. One typical benefit of contract-based programming is the
removal of defensive code in subprogram implementations.

It is common to see embedded software being used in a variety of configurations
that require small changes to the code for each instance. In C, variability is
usually achieved through macros and function pointers, the former being tied to
static variability and the latter to dynamic variability. Ada offers many
alternatives for both techniques, which aim at structuring possible variations
of the software. Examples of static variability in Ada are: genericity, simple
derivation, configuration pragma files, and configuration packages. Examples of
dynamic variability in Ada are: records with discriminants, variant records
— which may include the use of unions —, object orientation,
pointers to subprograms, and design by components using dynamic libraries.

There shouldn't be significant performance differences between code written in
Ada and code written in C — provided that they are semantically
equivalent. One reason is that the two languages are fairly similar in the way
they implement imperative semantics, in particular with regards to memory
management or control flow. Therefore, they should be equivalent on average.
However, when a piece of code in Ada is significantly slower than its
counterpart in C, this usually comes from the fact that, while the two pieces
of code appear to be semantically equivalent, they happen to be actually quite
different. Fortunately, there are strategies that we can use to improve the
performance and make it equivalent to the C version. These are some examples:

	Clever use of compilation switches, which might optimize the performance of
an application significantly.

	Suppression of checks at specific parts of the implementation.

	Although runtime checks are very useful and should be used as much as
possible, they can also increase the overhead of implementations at
certain hot-spots.

	Restriction of assertions to development code.

	For example, we may use assertions in the debug version of the code and
turn them off in the release version.

	Also, we may use formal proof to decide which assertions we turn off in
the release version. By formally proving that assertions will never fail
at run-time, we can safely deactivate them.

Formal proof — a form of static analysis — can give strong
guarantees about checks, for all possible conditions and all possible inputs.
It verifies conditions prior to execution, even prior to compilation, so we can
remove bugs earlier in the development phase. This is far less expensive than
doing so later because the cost to fix bugs increases exponentially over the
phases of the project life cycle, especially after deployment. Preventing bug
introduction into the deployed system is the least expensive approach of all.

Formal analysis for proof can be achieved through the SPARK subset of the Ada
language combined with the gnatprove verification tool. SPARK is a
subset encompassing most of the Ada language, except for features that preclude
proof.

In Ada, several common programming errors that are not already detected at
compile-time are detected instead at run-time, triggering exceptions that
interrupt the normal flow of execution. However, we may be able to prove that
the language-defined checks won't raise exceptions at run-time. This is known
as proving Absence of Run-Time Errors. Successful proof of these checks
is highly significant in itself. One of the major resulting benefits is that we
can deploy the final executable with checks disabled.

In many situations, the migration of C code to Ada is justified by an increase
in terms of integrity expectations, in which case it's expected that
development costs will raise. However, Ada is a more expressive, powerful
language, designed to reduce errors earlier in the life-cycle, thus reducing
costs. Therefore, Ada makes it possible to write very safe and secure software
at a lower cost than languages such as C.

Footnotes

Appendix A: Hands-On Object-Oriented Programming

The goal of this appendix is to present a hands-on view on how to translate a
system from C to Ada and improve it with object-oriented programming.

System Overview

Let's start with an overview of a simple system that we'll implement and use
below. The main system is called AB and it combines two systems A and B. System
AB is not supposed to do anything useful. However, it can serve as a good model
for the hands-on we're about to start.

This is a list of requirements for the individual systems A and B, and the
combined system AB:

	System A:

	The system can be activated and deactivated.

	During activation, the system's values are reset.

	Its current value (in floating-point) can be retrieved.

	This value is the average of the two internal floating-point values.

	Its current state (activated or deactivated) can be retrieved.

	System B:

	The system can be activated and deactivated.

	During activation, the system's value is reset.

	Its current value (in floating-point) can be retrieved.

	Its current state (activated or deactivated) can be retrieved.

	System AB

	The system contains an instance of system A and an instance of system B.

	The system can be activated and deactivated.

	System AB activates both systems A and B during its own activation.

	System AB deactivates both systems A and B during its own
deactivation.

	Its current value (in floating-point) can be retrieved.

	This value is the average of the current values of systems A and B.

	Its current state (activated or deactivated) can be retrieved.

	AB is only considered activated when both systems A and B are
activated.

	The system's health can be checked.

	This check consists in calculating the absolute difference D between
the current values of systems A and B and checking whether D is below
a threshold of 0.1.

The source-code in the following section contains an implementation of these
requirements.

Non Object-Oriented Approach

In this section, we look into implementations (in both C and Ada) of system AB
that don't make use of object-oriented programming.

Starting point in C

Let's start with an implementation in C for the system described above:

[C]

system_a.h

 1typedef struct {
 2 float val[2];
 3 int active;
 4} A;
 5
 6void A_activate (A *a);
 7
 8int A_is_active (A *a);
 9
10float A_value (A *a);
11
12void A_deactivate (A *a);

system_a.c

 1#include "system_a.h"
 2
 3void A_activate (A *a)
 4{
 5 int i;
 6
 7 for (i = 0; i < 2; i++)
 8 {
 9 a->val[i] = 0.0;
10 }
11 a->active = 1;
12}
13
14int A_is_active (A *a)
15{
16 return a->active == 1;
17}
18
19float A_value (A *a)
20{
21 return (a->val[0] + a->val[1]) / 2.0;
22}
23
24void A_deactivate (A *a)
25{
26 a->active = 0;
27}

system_b.h

 1typedef struct {
 2 float val;
 3 int active;
 4} B;
 5
 6void B_activate (B *b);
 7
 8int B_is_active (B *b);
 9
10float B_value (B *b);
11
12void B_deactivate (B *b);

system_b.c

 1#include "system_b.h"
 2
 3void B_activate (B *b)
 4{
 5 b->val = 0.0;
 6 b->active = 1;
 7}
 8
 9int B_is_active (B *b)
10{
11 return b->active == 1;
12}
13
14float B_value (B *b)
15{
16 return b->val;
17}
18
19void B_deactivate (B *b)
20{
21 b->active = 0;
22}

system_ab.h

 1#include "system_a.h"
 2#include "system_b.h"
 3
 4typedef struct {
 5 A a;
 6 B b;
 7} AB;
 8
 9void AB_activate (AB *ab);
10
11int AB_is_active (AB *ab);
12
13float AB_value (AB *ab);
14
15int AB_check (AB *ab);
16
17void AB_deactivate (AB *ab);

system_ab.c

 1#include <math.h>
 2#include "system_ab.h"
 3
 4void AB_activate (AB *ab)
 5{
 6 A_activate (&ab->a);
 7 B_activate (&ab->b);
 8}
 9
10int AB_is_active (AB *ab)
11{
12 return A_is_active(&ab->a) && B_is_active(&ab->b);
13}
14
15float AB_value (AB *ab)
16{
17 return (A_value (&ab->a) + B_value (&ab->b)) / 2;
18}
19
20int AB_check (AB *ab)
21{
22 const float threshold = 0.1;
23
24 return fabs (A_value (&ab->a) - B_value (&ab->b)) < threshold;
25}
26
27void AB_deactivate (AB *ab)
28{
29 A_deactivate (&ab->a);
30 B_deactivate (&ab->b);
31}

main.c

 1#include <stdio.h>
 2#include "system_ab.h"
 3
 4void display_active (AB *ab)
 5{
 6 if (AB_is_active (ab))
 7 printf ("System AB is active.\n");
 8 else
 9 printf ("System AB is not active.\n");
10}
11
12void display_check (AB *ab)
13{
14 if (AB_check (ab))
15 printf ("System AB check: PASSED.\n");
16 else
17 printf ("System AB check: FAILED.\n");
18}
19
20int main()
21{
22 AB s;
23
24 printf ("Activating system AB...\n");
25 AB_activate (&s);
26
27 display_active (&s);
28 display_check (&s);
29
30 printf ("Deactivating system AB...\n");
31 AB_deactivate (&s);
32
33 display_active (&s);
34}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_C
MD5: 649bcfe39504c853a0c3f43e1e048f34

Runtime output

Activating system AB...
System AB is active.
System AB check: PASSED.
Deactivating system AB...
System AB is not active.

Here, each system is implemented in a separate set of header and source-code
files. For example, the API of system AB is in system_ab.h and its
implementation in system_ab.c.

In the main application, we instantiate system AB and activate it. Then, we
proceed to display the activation state and the result of the system's health
check. Finally, we deactivate the system and display the activation state
again.

Initial translation to Ada

The direct implementation in Ada is:

[Ada]

system_a.ads

 1package System_A is
 2
 3 type Val_Array is array (Positive range <>) of Float;
 4
 5 type A is record
 6 Val : Val_Array (1 .. 2);
 7 Active : Boolean;
 8 end record;
 9
10 procedure A_Activate (E : in out A);
11
12 function A_Is_Active (E : A) return Boolean;
13
14 function A_Value (E : A) return Float;
15
16 procedure A_Deactivate (E : in out A);
17
18end System_A;

system_a.adb

 1package body System_A is
 2
 3 procedure A_Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 E.Active := True;
 7 end A_Activate;
 8
 9 function A_Is_Active (E : A) return Boolean is
10 begin
11 return E.Active;
12 end A_Is_Active;
13
14 function A_Value (E : A) return Float is
15 begin
16 return (E.Val (1) + E.Val (2)) / 2.0;
17 end A_Value;
18
19 procedure A_Deactivate (E : in out A) is
20 begin
21 E.Active := False;
22 end A_Deactivate;
23
24end System_A;

system_b.ads

 1package System_B is
 2
 3 type B is record
 4 Val : Float;
 5 Active : Boolean;
 6 end record;
 7
 8 procedure B_Activate (E : in out B);
 9
10 function B_Is_Active (E : B) return Boolean;
11
12 function B_Value (E : B) return Float;
13
14 procedure B_Deactivate (E : in out B);
15
16end System_B;

system_b.adb

 1package body System_B is
 2
 3 procedure B_Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 E.Active := True;
 7 end B_Activate;
 8
 9 function B_Is_Active (E : B) return Boolean is
10 begin
11 return E.Active;
12 end B_Is_Active;
13
14 function B_Value (E : B) return Float is
15 begin
16 return E.Val;
17 end B_Value;
18
19 procedure B_Deactivate (E : in out B) is
20 begin
21 E.Active := False;
22 end B_Deactivate;
23
24end System_B;

system_ab.ads

 1with System_A; use System_A;
 2with System_B; use System_B;
 3
 4package System_AB is
 5
 6 type AB is record
 7 SA : A;
 8 SB : B;
 9 end record;
10
11 procedure AB_Activate (E : in out AB);
12
13 function AB_Is_Active (E : AB) return Boolean;
14
15 function AB_Value (E : AB) return Float;
16
17 function AB_Check (E : AB) return Boolean;
18
19 procedure AB_Deactivate (E : in out AB);
20
21end System_AB;

system_ab.adb

 1package body System_AB is
 2
 3 procedure AB_Activate (E : in out AB) is
 4 begin
 5 A_Activate (E.SA);
 6 B_Activate (E.SB);
 7 end AB_Activate;
 8
 9 function AB_Is_Active (E : AB) return Boolean is
10 begin
11 return A_Is_Active (E.SA) and B_Is_Active (E.SB);
12 end AB_Is_Active;
13
14 function AB_Value (E : AB) return Float is
15 begin
16 return (A_Value (E.SA) + B_Value (E.SB)) / 2.0;
17 end AB_Value;
18
19 function AB_Check (E : AB) return Boolean is
20 Threshold : constant := 0.1;
21 begin
22 return abs (A_Value (E.SA) - B_Value (E.SB)) < Threshold;
23 end AB_Check;
24
25 procedure AB_Deactivate (E : in out AB) is
26 begin
27 A_Deactivate (E.SA);
28 B_Deactivate (E.SB);
29 end AB_Deactivate;
30
31end System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with System_AB; use System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if AB_Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if AB_Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 AB_Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 AB_Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada
MD5: f2e3df0b3874e5edc5ea90c01961cf64

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

As you can see, this is a direct translation that doesn't change much of the
structure of the original C code. Here, the goal was to simply translate the
system from one language to another and make sure that the behavior remains the
same.

Improved Ada implementation

By analyzing this direct implementation, we may notice the following points:

	Packages System_A, System_B and System_AB are used to
describe aspects of the same system. Instead of having three distinct
packages, we could group them as child packages of a common parent package
— let's call it Simple, since this system is supposed to be
simple. This approach has the advantage of allowing us to later use the
parent package to implement functionality that is common for all parts of the
system.

	Since we have subprograms that operate on types A, B and
AB, we should avoid exposing the record components by moving the
type declarations to the private part of the corresponding packages.

	Since Ada supports subprogram overloading — as discussed in
this section from chapter 2 —, we don't need to
have different names for subprograms with similar functionality. For example,
instead of having A_Is_Active and B_Is_Active, we can simply
name these functions Is_Active for both types A and B.

	Some of the functions — such as A_Is_Active and A_Value
— are very simple, so we could simplify them with expression functions.

This is an update to the implementation that addresses all the points above:

[Ada]

simple.ads

1package Simple
2 with Pure
3is
4end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is private;
 4
 5 procedure Activate (E : in out A);
 6
 7 function Is_Active (E : A) return Boolean;
 8
 9 function Value (E : A) return Float;
10
11 procedure Finalize (E : in out A);
12
13private
14
15 type Val_Array is array (Positive range <>) of Float;
16
17 type A is record
18 Val : Val_Array (1 .. 2);
19 Active : Boolean;
20 end record;
21
22end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 E.Active := True;
 7 end Activate;
 8
 9 function Is_Active (E : A) return Boolean is
10 (E.Active);
11
12 function Value (E : A) return Float is
13 begin
14 return (E.Val (1) + E.Val (2)) / 2.0;
15 end Value;
16
17 procedure Finalize (E : in out A) is
18 begin
19 E.Active := False;
20 end Finalize;
21
22end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is private;
 4
 5 procedure Activate (E : in out B);
 6
 7 function Is_Active (E : B) return Boolean;
 8
 9 function Value (E : B) return Float;
10
11 procedure Finalize (E : in out B);
12
13private
14
15 type B is record
16 Val : Float;
17 Active : Boolean;
18 end record;
19
20end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 E.Active := True;
 7 end Activate;
 8
 9 function Is_Active (E : B) return Boolean is
10 begin
11 return E.Active;
12 end Is_Active;
13
14 function Value (E : B) return Float is
15 (E.Val);
16
17 procedure Finalize (E : in out B) is
18 begin
19 E.Active := False;
20 end Finalize;
21
22end Simple.System_B;

simple-system_ab.ads

 1with Simple.System_A; use Simple.System_A;
 2with Simple.System_B; use Simple.System_B;
 3
 4package Simple.System_AB is
 5
 6 type AB is private;
 7
 8 procedure Activate (E : in out AB);
 9
10 function Is_Active (E : AB) return Boolean;
11
12 function Value (E : AB) return Float;
13
14 function Check (E : AB) return Boolean;
15
16 procedure Finalize (E : in out AB);
17
18private
19
20 type AB is record
21 SA : A;
22 SB : B;
23 end record;
24
25end Simple.System_AB;

simple-system_ab.adb

 1package body Simple.System_AB is
 2
 3 procedure Activate (E : in out AB) is
 4 begin
 5 Activate (E.SA);
 6 Activate (E.SB);
 7 end Activate;
 8
 9 function Is_Active (E : AB) return Boolean is
10 (Is_Active (E.SA) and Is_Active (E.SB));
11
12 function Value (E : AB) return Float is
13 ((Value (E.SA) + Value (E.SB)) / 2.0);
14
15 function Check (E : AB) return Boolean is
16 Threshold : constant := 0.1;
17 begin
18 return abs (Value (E.SA) - Value (E.SB)) < Threshold;
19 end Check;
20
21 procedure Finalize (E : in out AB) is
22 begin
23 Finalize (E.SA);
24 Finalize (E.SB);
25 end Finalize;
26
27end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Finalize (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_Enhanced
MD5: 5019a7088ab4160f5e3b33c73db2b03b

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

First Object-Oriented Approach

Until now, we haven't used any of the object-oriented programming features of
the Ada language. So we can start by analyzing the API of systems A and B and
deciding how to best abstract some of its elements using object-oriented
programming.

Interfaces

The first thing we may notice is that we actually have two distinct sets of
APIs there:

	one API for activating and deactivating the system.

	one API for retrieving the value of the system.

We can use this distinction to declare two interface types:

	Activation_IF for the Activate and Deactivate procedures
and the Is_Active function;

	Value_Retrieval_IF for the Value function.

This is how the declaration could look like:

type Activation_IF is interface;

procedure Activate (E : in out Activation_IF) is abstract;
function Is_Active (E : Activation_IF) return Boolean is abstract;
procedure Deactivate (E : in out Activation_IF) is abstract;

type Value_Retrieval_IF is interface;

function Value (E : Value_Retrieval_IF) return Float is abstract;

Note that, because we are declaring interface types, all operations on those
types must be abstract or, in the case of procedures, they can also be declared
null. For example, we could change the declaration of the procedures
above to this:

procedure Activate (E : in out Activation_IF) is null;
procedure Deactivate (E : in out Activation_IF) is null;

When an operation is declared abstract, we must override it for the type that
derives from the interface. When a procedure is declared null, it acts
as a do-nothing default. In this case, overriding the operation is optional for
the type that derives from this interface.

Base type

Since the original system needs both interfaces we've just described, we have
to declare another type that combines those interfaces. We can do this by
declaring the interface type Sys_Base, which serves as the base type for
systems A and B. This is the declaration:

type Sys_Base is interface and Activation_IF and Value_Retrieval_IF;

Since the system activation functionality is common for both systems A and B,
we could implement it as part of Sys_Base. That would require changing
the declaration from a simple interface to an abstract record:

type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
 with null record;

Now, we can add the Boolean component to the record (as a private component)
and override the subprograms of the Activation_IF interface. This is the
adapted declaration:

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with private;

 overriding procedure Activate (E : in out Sys_Base);
 overriding function Is_Active (E : Sys_Base) return Boolean;
 overriding procedure Deactivate (E : in out Sys_Base);

private

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with record
 Active : Boolean;
 end record;

Derived types

In the declaration of the Sys_Base type we've just seen, we're not
overriding the Value function — from the
Value_Retrieval_IF interface — for the Sys_Base type, so it
remains an abstract function for Sys_Base. Therefore, the
Sys_Base type itself remains abstract and needs be explicitly declared
as such.

We use this strategy to ensure that all types derived from Sys_Base need
to implement their own version of the Value function. For example:

type A is new Sys_Base with private;

overriding function Value (E : A) return Float;

Here, the A type is derived from the Sys_Base and it includes its
own version of the Value function by overriding it. Therefore,
A is not an abstract type anymore and can be used to declare objects:

procedure Main is
 Obj : A;
 V : Float;
begin
 Obj.Activate;
 V := Obj.Value;
end Main;

Important

Note that the use of the overriding keyword in the subprogram
declaration is not strictly necessary. In fact, we could leave this keyword
out, and the code would still compile. However, if provided, the compiler
will check whether the information is correct.

Using the overriding keyword can help to avoid bad surprises
— when you may think that you're overriding a subprogram, but
you're actually not. Similarly, you can also write not overriding to
be explicit about subprograms that are new primitives of a derived type.
For example:

not overriding function Check (E : AB) return Boolean;

We also need to declare the values that are used internally in systems A and B.
For system A, this is the declaration:

 type A is new Sys_Base with private;

 overriding function Value (E : A) return Float;

private

 type Val_Array is array (Positive range <>) of Float;

 type A is new Sys_Base with record
 Val : Val_Array (1 .. 2);
 end record;

Subprograms from parent

In the previous implementation, we've seen that the A_Activate and
B_Activate procedures perform the following steps:

	initialize internal values;

	indicate that the system is active (by setting the Active flag to
True).

In the implementation of the Activate procedure for the Sys_Base
type, however, we're only dealing with the second step. Therefore, we need to
override the Activate procedure and make sure that we initialize
internal values as well. First, we need to declare this procedure for type
A:

type A is new Sys_Base with private;

overriding procedure Activate (E : in out A);

In the implementation of Activate, we should call the Activate
procedure from the parent (Sys_Base) to ensure that whatever was
performed for the parent will be performed in the derived type as well. For
example:

overriding procedure Activate (E : in out A) is
begin
 E.Val := (others => 0.0);
 Sys_Base (E).Activate; -- Calling Activate for Sys_Base type:
 -- this call initializes the Active flag.
end;

Here, by writing Sys_Base (E), we're performing a view conversion.
Basically, we're telling the compiler to view E not as an object of
type A, but of type Sys_Base. When we do this, any operation
performed on this object will be done as if it was an object of
Sys_Base type, which includes calling the Activate procedure of
the Sys_Base type.

Important

If we write T (Obj).Proc, we're telling the compiler to call the
Proc procedure of type T and apply it on Obj.

If we write T'Class (Obj).Proc, however, we're telling the compiler
to dispatch the call. For example, if Obj is of derived type
T2 and there's an overridden Proc procedure for type
T2, then this procedure will be called instead of the Proc
procedure for type T.

Type AB

While the implementation of systems A and B is almost straightforward, it gets
more interesting in the case of system AB. Here, we have a similar API, but we
don't need the activation mechanism implemented in the abstract type
Sys_Base. Therefore, deriving from Sys_Base is not the best
option. Instead, when declaring the AB type, we can simply use the same
interfaces as we did for Sys_Base, but keep it independent from
Sys_Base. For example:

 type AB is new Activation_IF and Value_Retrieval_IF with private;

private

 type AB is new Activation_IF and Value_Retrieval_IF with record
 SA : A;
 SB : B;
 end record;

Naturally, we still need to override all the subprograms that are part of the
Activation_IF and Value_Retrieval_IF interfaces. Also, we need
to implement the additional Check function that was originally only
available on system AB. Therefore, we declare these subprograms:

overriding procedure Activate (E : in out AB);
overriding function Is_Active (E : AB) return Boolean;
overriding procedure Deactivate (E : in out AB);

overriding function Value (E : AB) return Float;

not overriding function Check (E : AB) return Boolean;

Updated source-code

Finally, this is the complete source-code example:

[Ada]

simple.ads

 1package Simple is
 2
 3 type Activation_IF is interface;
 4
 5 procedure Activate (E : in out Activation_IF) is abstract;
 6 function Is_Active (E : Activation_IF) return Boolean is abstract;
 7 procedure Deactivate (E : in out Activation_IF) is abstract;
 8
 9 type Value_Retrieval_IF is interface;
10
11 function Value (E : Value_Retrieval_IF) return Float is abstract;
12
13 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
14 with private;
15
16 overriding procedure Activate (E : in out Sys_Base);
17 overriding function Is_Active (E : Sys_Base) return Boolean;
18 overriding procedure Deactivate (E : in out Sys_Base);
19
20private
21
22 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
23 with record
24 Active : Boolean;
25 end record;
26
27end Simple;

simple.adb

 1package body Simple is
 2
 3 overriding procedure Activate (E : in out Sys_Base) is
 4 begin
 5 E.Active := True;
 6 end Activate;
 7
 8 overriding function Is_Active (E : Sys_Base) return Boolean is
 9 (E.Active);
10
11 overriding procedure Deactivate (E : in out Sys_Base) is
12 begin
13 E.Active := False;
14 end Deactivate;
15
16end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is new Sys_Base with private;
 4
 5 overriding procedure Activate (E : in out A);
 6
 7 overriding function Value (E : A) return Float;
 8
 9private
10
11 type Val_Array is array (Positive range <>) of Float;
12
13 type A is new Sys_Base with record
14 Val : Val_Array (1 .. 2);
15 end record;
16
17end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 Sys_Base (E).Activate;
 7 end Activate;
 8
 9 function Value (E : A) return Float is
10 pragma Assert (E.Val'Length = 2);
11 begin
12 return (E.Val (1) + E.Val (2)) / 2.0;
13 end Value;
14
15end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is new Sys_Base with private;
 4
 5 overriding procedure Activate (E : in out B);
 6
 7 overriding function Value (E : B) return Float;
 8
 9private
10
11 type B is new Sys_Base with record
12 Val : Float;
13 end record;
14
15end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 Sys_Base (E).Activate;
 7 end Activate;
 8
 9 function Value (E : B) return Float is
10 (E.Val);
11
12end Simple.System_B;

simple-system_ab.ads

 1with Simple.System_A; use Simple.System_A;
 2with Simple.System_B; use Simple.System_B;
 3
 4package Simple.System_AB is
 5
 6 type AB is new Activation_IF and Value_Retrieval_IF with private;
 7
 8 overriding procedure Activate (E : in out AB);
 9 overriding function Is_Active (E : AB) return Boolean;
10 overriding procedure Deactivate (E : in out AB);
11
12 overriding function Value (E : AB) return Float;
13
14 not overriding function Check (E : AB) return Boolean;
15
16private
17
18 type AB is new Activation_IF and Value_Retrieval_IF with record
19 SA : A;
20 SB : B;
21 end record;
22
23end Simple.System_AB;

simple-system_ab.adb

 1package body Simple.System_AB is
 2
 3 procedure Activate (E : in out AB) is
 4 begin
 5 E.SA.Activate;
 6 E.SB.Activate;
 7 end Activate;
 8
 9 function Is_Active (E : AB) return Boolean is
10 (E.SA.Is_Active and E.SB.Is_Active);
11
12 procedure Deactivate (E : in out AB) is
13 begin
14 E.SA.Deactivate;
15 E.SB.Deactivate;
16 end Deactivate;
17
18 function Value (E : AB) return Float is
19 ((E.SA.Value + E.SB.Value) / 2.0);
20
21 function Check (E : AB) return Boolean is
22 Threshold : constant := 0.1;
23 begin
24 return abs (E.SA.Value - E.SB.Value) < Threshold;
25 end Check;
26
27end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_OOP_1
MD5: 02adee1f81b025007244bd6d13e8b5a3

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

Further Improvements

When analyzing the complete source-code, we see that there are at least two
areas that we could still improve.

Dispatching calls

The first issue concerns the implementation of the Activate procedure
for types derived from Sys_Base. For those derived types, we're
expecting that the Activate procedure of the parent must be called in
the implementation of the overriding Activate procedure. For example:

package body Simple.System_A is

 procedure Activate (E : in out A) is
 begin
 E.Val := (others => 0.0);
 Activate (Sys_Base (E));
 end;

If a developer forgets to call that specific Activate procedure,
however, the system won't work as expected. A better strategy could be the
following:

	Declare a new Activation_Reset procedure for Sys_Base type.

	Make a dispatching call to the Activation_Reset procedure in the body
of the Activate procedure (of the Sys_Base type).

	Let the derived types implement their own version of the
Activation_Reset procedure.

This is a simplified view of the implementation using the points described
above:

package Simple is

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
 private;

 not overriding procedure Activation_Reset (E : in out Sys_Base) is abstract;

end Simple;

package body Simple is

 procedure Activate (E : in out Sys_Base) is
 begin
 -- NOTE: calling "E.Activation_Reset" does NOT dispatch!
 -- We need to use the 'Class attribute here --- not using this
 -- attribute is an error that will be caught by the compiler.
 Sys_Base'Class (E).Activation_Reset;

 E.Active := True;
 end Activate;

end Simple;

package Simple.System_A is

 type A is new Sys_Base with private;

private

 type Val_Array is array (Positive range <>) of Float;

 type A is new Sys_Base with record
 Val : Val_Array (1 .. 2);
 end record;

 overriding procedure Activation_Reset (E : in out A);

end Simple.System_A;

package body Simple.System_A is

 procedure Activation_Reset (E : in out A) is
 begin
 E.Val := (others => 0.0);
 end Activation_Reset;

end Simple.System_A;

An important detail is that, in the implementation of Activate, we use
Sys_Base'Class to ensure that the call to Activation_Reset will
dispatch. If we had just written E.Activation_Reset instead, then we
would be calling the Activation_Reset procedure of Sys_Base
itself, which is not what we actually want here. The compiler will catch the
error if you don't do the conversion to the class-wide type, because it would
otherwise be a statically-bound call to an abstract procedure, which is illegal
at compile-time.

Dynamic allocation

The next area that we could improve is in the declaration of the system AB. In
the previous implementation, we were explicitly describing the two
components of that system, namely a component of type A and a component
of type B:

type AB is new Activation_IF and Value_Retrieval_IF with record
 SA : A;
 SB : B;
end record;

Of course, this declaration matches the system requirements that we presented
in the beginning. However, we could use strategies that make it easier to
incorporate requirement changes later on. For example, we could hide this
information about systems A and B by simply declaring an array of
components of type access Sys_Base'Class and allocate them dynamically
in the body of the package. Naturally, this approach might not be suitable for
certain platforms. However, the advantage would be that, if we wanted to
replace the component of type B by a new component of type C, for
example, we wouldn't need to change the interface. This is how the updated
declaration could look like:

type Sys_Base_Class_Access is access Sys_Base'Class;
type Sys_Base_Array is array (Positive range <>) of Sys_Base_Class_Access;

type AB is limited new Activation_IF and Value_Retrieval_IF with record
 S_Array : Sys_Base_Array (1 .. 2);
end record;

Important

Note that we're now using the limited keyword in the declaration of
type AB. That is necessary because we want to prevent objects of
type AB being copied by assignment, which would lead to two objects
having the same (dynamically allocated) subsystems A and B internally. This
change requires that both Activation_IF and
Value_Retrieval_IF are declared limited as well.

The body of Activate could then allocate those components:

procedure Activate (E : in out AB) is
begin
 E.S_Array := (new A, new B);
 for S of E.S_Array loop
 S.Activate;
 end loop;
end Activate;

And the body of Deactivate could deallocate them:

procedure Deactivate (E : in out AB) is
 procedure Free is
 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
begin
 for S of E.S_Array loop
 S.Deactivate;
 Free (S);
 end loop;
end Deactivate;

Limited controlled types

Another approach that we could use to implement the dynamic allocation of
systems A and B is to declare AB as a limited controlled type —
based on the Limited_Controlled type of the Ada.Finalization
package.

The Limited_Controlled type includes the following operations:

	Initialize, which is called when objects of a type derived from the
Limited_Controlled type are being created — by declaring an
object of the derived type, for example —, and

	Finalize, which is called when objects are being destroyed —
for example, when an object gets out of scope at the end of a subprogram
where it was created.

In this case, we must override those procedures, so we can use them for dynamic
memory allocation. This is a simplified view of the update implementation:

package Simple.System_AB is

 type AB is limited new Ada.Finalization.Limited_Controlled and
 Activation_IF and Value_Retrieval_IF with private;

 overriding procedure Initialize (E : in out AB);
 overriding procedure Finalize (E : in out AB);

end Simple.System_AB;

package body Simple.System_AB is

 overriding procedure Initialize (E : in out AB) is
 begin
 E.S_Array := (new A, new B);
 end Initialize;

 overriding procedure Finalize (E : in out AB) is
 procedure Free is
 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
 begin
 for S of E.S_Array loop
 Free (S);
 end loop;
 end Finalize;

end Simple.System_AB;

Updated source-code

Finally, this is the complete updated source-code example:

[Ada]

simple.ads

 1package Simple is
 2
 3 type Activation_IF is limited interface;
 4
 5 procedure Activate (E : in out Activation_IF) is abstract;
 6 function Is_Active (E : Activation_IF) return Boolean is abstract;
 7 procedure Deactivate (E : in out Activation_IF) is abstract;
 8
 9 type Value_Retrieval_IF is limited interface;
10
11 function Value (E : Value_Retrieval_IF) return Float is abstract;
12
13 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
14 private;
15
16 overriding procedure Activate (E : in out Sys_Base);
17 overriding function Is_Active (E : Sys_Base) return Boolean;
18 overriding procedure Deactivate (E : in out Sys_Base);
19
20 not overriding procedure Activation_Reset (E : in out Sys_Base) is abstract;
21
22private
23
24 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
25 record
26 Active : Boolean;
27 end record;
28
29end Simple;

simple.adb

 1package body Simple is
 2
 3 procedure Activate (E : in out Sys_Base) is
 4 begin
 5 -- NOTE: calling "E.Activation_Reset" does NOT dispatch!
 6 -- We need to use the 'Class attribute:
 7 Sys_Base'Class (E).Activation_Reset;
 8
 9 E.Active := True;
10 end Activate;
11
12 function Is_Active (E : Sys_Base) return Boolean is
13 (E.Active);
14
15 procedure Deactivate (E : in out Sys_Base) is
16 begin
17 E.Active := False;
18 end Deactivate;
19
20end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is new Sys_Base with private;
 4
 5 overriding function Value (E : A) return Float;
 6
 7private
 8
 9 type Val_Array is array (Positive range <>) of Float;
10
11 type A is new Sys_Base with record
12 Val : Val_Array (1 .. 2);
13 end record;
14
15 overriding procedure Activation_Reset (E : in out A);
16
17end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activation_Reset (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 end Activation_Reset;
 7
 8 function Value (E : A) return Float is
 9 pragma Assert (E.Val'Length = 2);
10 begin
11 return (E.Val (1) + E.Val (2)) / 2.0;
12 end Value;
13
14end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is new Sys_Base with private;
 4
 5 overriding function Value (E : B) return Float;
 6
 7private
 8
 9 type B is new Sys_Base with record
10 Val : Float;
11 end record;
12
13 overriding procedure Activation_Reset (E : in out B);
14
15end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activation_Reset (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 end Activation_Reset;
 7
 8 function Value (E : B) return Float is
 9 (E.Val);
10
11end Simple.System_B;

simple-system_ab.ads

 1with Ada.Finalization;
 2
 3package Simple.System_AB is
 4
 5 type AB is limited new Ada.Finalization.Limited_Controlled and
 6 Activation_IF and Value_Retrieval_IF with private;
 7
 8 overriding procedure Activate (E : in out AB);
 9 overriding function Is_Active (E : AB) return Boolean;
10 overriding procedure Deactivate (E : in out AB);
11
12 overriding function Value (E : AB) return Float;
13
14 not overriding function Check (E : AB) return Boolean;
15
16private
17
18 type Sys_Base_Class_Access is access Sys_Base'Class;
19 type Sys_Base_Array is array (Positive range <>) of Sys_Base_Class_Access;
20
21 type AB is limited new Ada.Finalization.Limited_Controlled and
22 Activation_IF and Value_Retrieval_IF with record
23 S_Array : Sys_Base_Array (1 .. 2);
24 end record;
25
26 overriding procedure Initialize (E : in out AB);
27 overriding procedure Finalize (E : in out AB);
28
29end Simple.System_AB;

simple-system_ab.adb

 1with Ada.Unchecked_Deallocation;
 2
 3with Simple.System_A; use Simple.System_A;
 4with Simple.System_B; use Simple.System_B;
 5
 6package body Simple.System_AB is
 7
 8 overriding procedure Initialize (E : in out AB) is
 9 begin
10 E.S_Array := (new A, new B);
11 end Initialize;
12
13 overriding procedure Finalize (E : in out AB) is
14 procedure Free is
15 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
16 begin
17 for S of E.S_Array loop
18 Free (S);
19 end loop;
20 end Finalize;
21
22 procedure Activate (E : in out AB) is
23 begin
24 for S of E.S_Array loop
25 S.Activate;
26 end loop;
27 end Activate;
28
29 function Is_Active (E : AB) return Boolean is
30 (for all S of E.S_Array => S.Is_Active);
31
32 procedure Deactivate (E : in out AB) is
33 begin
34 for S of E.S_Array loop
35 S.Deactivate;
36 end loop;
37 end Deactivate;
38
39 function Value (E : AB) return Float is
40 ((E.S_Array (1).Value + E.S_Array (2).Value) / 2.0);
41
42 function Check (E : AB) return Boolean is
43 Threshold : constant := 0.1;
44 begin
45 return abs (E.S_Array (1).Value - E.S_Array (2).Value) < Threshold;
46 end Check;
47
48end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_OOP_2
MD5: f8d0d4a07aaa045cb30bddc88db2215a

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

Naturally, this is by no means the best possible implementation of system AB.
By applying other software design strategies that we haven't covered here, we
could most probably think of different ways to use object-oriented programming
to improve this implementation. Also, in comparison to the
original implementation, we recognize that
the amount of source-code has grown. On the other hand, we now have a system
that is factored nicely, and also more extensible.

Footnotes

Index

 _static/minus.png

_static/plus.png

_static/learn_meta_img.jpeg

_static/file.png

_static/logo.png
LEARN.

ADACORE.COM

nav.xhtml

 Table of Contents

 		
 Ada for the Embedded C Developer

 		
 Introduction

 		
 So, what is this Ada thing anyway?

 		
 Ada — The Technical Details

 		
 The C Developer's Perspective

 		
 What we mean by Embedded Software

 		
 The GNAT Toolchain

 		
 The GNAT Toolchain for Embedded Targets

 		
 Hello World in Ada

 		
 The Ada Syntax

 		
 Compilation Unit Structure

 		
 Packages

 		
 Declaration Protection

 		
 Hierarchical Packages

 		
 Using Entities from Packages

 		
 Statements and Declarations

 		
 Conditions

 		
 Loops

 		
 Type System

 		
 Strong Typing

 		
 Language-Defined Types

 		
 Application-Defined Types

 		
 Type Ranges

 		
 Unsigned And Modular Types

 		
 Attributes

 		
 Arrays and Strings

 		
 Heterogeneous Data Structures

 		
 Pointers

 		
 Functions and Procedures

 		
 General Form

 		
 Overloading

 		
 Aspects

 		
 Concurrency and Real-Time

 		
 Understanding the various options

 		
 Tasks

 		
 Rendezvous

 		
 Selective Rendezvous

 		
 Protected Objects

 		
 Ravenscar

 		
 Writing Ada on Embedded Systems

 		
 Understanding the Ada Run-Time

 		
 Low Level Programming

 		
 Representation Clauses

 		
 Embedded Assembly Code

 		
 Interrupt Handling

 		
 Dealing with Absence of FPU with Fixed Point

 		
 Volatile and Atomic data

 		
 Volatile

 		
 Atomic

 		
 Interfacing with Devices

 		
 Size aspect and attribute

 		
 Register overlays

 		
 Data streams

 		
 ARM and svd2ada

 		
 Enhancing Verification with SPARK and Ada

 		
 Understanding Exceptions and Dynamic Checks

 		
 Understanding Dynamic Checks versus Formal Proof

 		
 Initialization and Correct Data Flow

 		
 Contract-Based Programming

 		
 Replacing Defensive Code

 		
 Proving Absence of Run-Time Errors

 		
 Proving Abstract Properties

 		
 Final Comments

 		
 C to Ada Translation Patterns

 		
 Naming conventions and casing considerations

 		
 Manually interfacing C and Ada

 		
 Building and Debugging mixed language code

 		
 Automatic interfacing

 		
 Using Arrays in C interfaces

 		
 By-value vs. by-reference types

 		
 Naming and prefixes

 		
 Pointers

 		
 Bitwise Operations

 		
 Mapping Structures to Bit-Fields

 		
 Overlays vs. Unchecked Conversions

 		
 Handling Variability and Re-usability

 		
 Understanding static and dynamic variability

 		
 Handling variability & reusability statically

 		
 Genericity

 		
 Simple derivation

 		
 Configuration pragma files

 		
 Configuration packages

 		
 Handling variability & reusability dynamically

 		
 Records with discriminants

 		
 Variant records

 		
 Object orientation

 		
 Pointer to subprograms

 		
 Design by components using dynamic libraries

 		
 Performance Considerations

 		
 Overall expectations

 		
 Switches and optimizations

 		
 Optimizations levels

 		
 Inlining

 		
 Checks and assertions

 		
 Checks

 		
 Assertions

 		
 Dynamic vs. static structures

 		
 Pointers vs. data copies

 		
 Function returns

 		
 Argumentation and Business Perspectives

 		
 What's the expected ROI of a C to Ada transition?

 		
 Who is using Ada today?

 		
 What is the future of the Ada technology?

 		
 Is the Ada toolset complete?

 		
 Where can I find Ada or SPARK developers?

 		
 How to introduce Ada and SPARK in an existing code base?

 		
 Conclusion

 		
 Hands-On: Object-Oriented Programming

 		
 System Overview

 		
 Non Object-Oriented Approach

 		
 Starting point in C

 		
 Initial translation to Ada

 		
 Improved Ada implementation

 		
 First Object-Oriented Approach

 		
 Interfaces

 		
 Base type

 		
 Derived types

 		
 Subprograms from parent

 		
 Type AB

 		
 Updated source-code

 		
 Further Improvements

 		
 Dispatching calls

 		
 Dynamic allocation

 		
 Limited controlled types

 		
 Updated source-code

_static/cover.jpeg

_images/ccheart_black.png

